Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Simultaneous Removal of Lead and Aniline From Industrial Wastewater Using Magnetic Composite of Fe3o4/Pac



Kalantary RR1 ; Jafari AJ1 ; Kakavandi B2 ; Nasseri S3 ; Ameri A1 ; Esrafili A3
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Environmental Health Engineering, School of Health, Jundishapur University of Medical Sciences, Ahvaz, Ahvaz, Iran
  2. 2. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

Source: Iran Occupational Health Published:2015

Abstract

Background and aims: Today, using magnetic adsorbents and the subsequent magnetically separation of pollutants is highly considered by researchers due to it's ease of use, low cost and rapid results. Therefore the aim of this study was the synthesis of a magnetic composite of activated carbon/Fe3O4 nanoparticles (Fe3O4/PAC), and its application as a magnetic adsorbent for simultaneous removal of lead and aniline from industrial wastewater. Methods: Physical, surface and morphological features of the adsorbent, as well as, the performance of adsorption process were studied in a batch system by investigating the changes in parameters such as pH, contact time, adsorbent and adsorbate concentrations, and temperature. In order to explain experimental data, Freundlich and Langmuir equilibrium isotherms, in addition to Lagergren, Ho and Elovich kinetic equations were applied. Results: Results of this study demonstrated that 90 % of lead and 94 % of aniline were removable by the synthesized adsorbent under the optimal conditions (pH 6, a contact time 60 min and adsorbent dose of 2 g/L). Experimental data from adsorption were better described by both Langmuir and Freundlich isotherm models, and the pseudo-second-order kinetic model. Conclusion: According to these results, it can be claimed that Fe3O4/PAC had an effective adsorption capacity for simultaneous adsorption of lead and aniline, and thus, it is recommended to optimally use Fe3O4/PAC as an efficient adsorbent for treatment of wastewaters containing these pollutants.