Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
How Prices and Income Influence Global Patterns in Saturated Fat Intake by Age, Sex and World Region: A Cross-Sectional Analysis of 160 Countries Publisher Pubmed



Ahles A1 ; Muhammad A2 ; Yenerall JN2 ; Reedy J3 ; Shi P3 ; Zhang J3 ; Cudhea F3 ; Erndtmarino J3 ; Miller V3 ; Mozaffarian D3 ; Abbott P4 ; Abdollahi M5 ; Abedi P6 ; Abumweis S7 Show All Authors
Authors
  1. Ahles A1
  2. Muhammad A2
  3. Yenerall JN2
  4. Reedy J3
  5. Shi P3
  6. Zhang J3
  7. Cudhea F3
  8. Erndtmarino J3
  9. Miller V3
  10. Mozaffarian D3
  11. Abbott P4
  12. Abdollahi M5
  13. Abedi P6
  14. Abumweis S7
  15. Adair L8
  16. Nsour MA8
  17. Alam I9
  18. Aldaghri N10
  19. Sabico S10
  20. Alhamad NA11
  21. Alhooti S12
  22. Alissa E13
  23. Alzenki S14
  24. Anderson S14
  25. Anzid K15
  26. Arambepola C16
  27. Arici M17
  28. Arsenault J19
  29. Asciak R18
  30. Biro L20
  31. Barengo N20
  32. Barquera S20
  33. Dommarco JR20
  34. Illescaszarate D20
  35. Sanchezromero LM20
  36. Ramirez SR20
  37. Silva IR20
  38. Bas M21
  39. Becker W22
  40. Beerborst S22
  41. Bergman P22
  42. Lindroos AK22
  43. Sipinen JP22
  44. Moraeus L22
  45. Boindala S23
  46. Bovet P24
  47. Bradshaw D25
  48. Bundhamcharoen K26
  49. Caballero MT26
  50. Calleja N27
  51. Cao X28
  52. Capanzana M28
  53. Carmikle J29
  54. Castetbon K30
  55. Castro M31
  56. Cerdena C31
  57. Chang HY32
  58. Charlton K32
  59. Chen Y33
  60. Chiplonkar S34
  61. Cho Y35
  62. Chuah KA36
  63. Costanzo S37
  64. Cowan M38
  65. Damasceno A39
  66. Dastgiri S39
  67. Henauw SD40
  68. Lachat C41
  69. Deridder K42
  70. Ding E43
  71. Don R44
  72. Duante C45
  73. Duleva V46
  74. Aguero SD47
  75. Ekbote V48, 118
  76. Ati JE49
  77. Eldridge A49
  78. Elkour T49
  79. Nikiema L50
  80. Elmadfa I51
  81. Barbieri HE52
  82. Esteghamati A52
  83. Etemad Z53
  84. Fadzil F53
  85. Farzadfar F54
  86. Chan MF54
  87. Fernandez A55
  88. Fernando D56
  89. Fisberg R57
  90. Forsyth S58
  91. Delgado EG58
  92. Garriguet D59
  93. Gaspoz JM60
  94. Gauci D61
  95. Geleijnse JM62
  96. Ginnela B62
  97. Grosso G63
  98. Guessous I64
  99. Gulliford M65
  100. Gunnarsdottir I65
  101. Thorsdottir I66
  102. Thorgeirsdottir H67
  103. Hadden W67
  104. Hadziomeragic A67
  105. Haerpfer C68
  106. Ali JH68
  107. Hakeem R69
  108. Haque A69
  109. Hashemian M70
  110. Hemalatha R70
  111. Laxmaiah A71
  112. Meshram I71
  113. Rachakulla H72
  114. Arlappa N72
  115. Henjum S73
  116. Hinkov H74
  117. Hjdaud Z75
  118. Hopping B76
  119. Houshiarrad A76
  120. Hsieh YT77
  121. Hung SY78
  122. Huybrechts I79
  123. Hwalla NC80
  124. Ikeda N81
  125. Inoue M82
  126. Jonsdottir O83
  127. Mohamed HJBJ84
  128. Janakiram C85
  129. Jeewon R86
  130. Johansson NJL87
  131. Kally O88
  132. Kandiah M89
  133. Karupaiah T90
  134. Keinanboker L91
  135. Kelishadi R92
  136. Khadilkar A93
  137. Kim CI94
  138. Koksal E95
  139. Konig J96
  140. Korkalo L97
  141. Roos E97
  142. Koster J98
  143. Kovalskys I99
  144. Krishnan A100
  145. Kruger H101
  146. Kuriyanraj R102
  147. Oh K103
  148. Lai Y104
  149. Lanerolle P105
  150. Waidyatilaka I105
  151. Leclercq C106
  152. Lee MS106
  153. Lee HJ107
  154. Veerman JL107
  155. Marques LL108
  156. Li Y108
  157. Lindstrom J76
  158. Ling A110
  159. Lipoeto NI110
  160. Lopezjaramillo P111
  161. Luke A112
  162. Lukito W113
  163. Lunet N113
  164. Lopes C114
  165. Severo M115
  166. Torres D116
  167. Lupotto E117
  168. Turrini A48, 118
  169. Sette S119
  170. Piccinelli R119
  171. Ma Y120
  172. Mahdy ZA120
  173. Malekzadeh R121
  174. Manan W112
  175. Marchioni D122
  176. Marquesvidal P123
  177. Martinprevel Y124
  178. Ibrahim HM125
  179. Mathee A125
  180. Matsumura Y126
  181. Mazumdar P127
  182. Sibai AM127
  183. Memon A128
  184. Mensink G128
  185. Meyer A129
  186. Mirmiran P129
  187. Mirzaei M130
  188. Misra P130
  189. Misra A131
  190. Mitchell C131
  191. Balfour D132
  192. Mohammadifard N132
  193. Sarrafzadegan N133
  194. Mwangi M49
  195. Maghroun M135
  196. Mohammadinasrabadi F50
  197. Shariff ZM137
  198. Moy FM138
  199. Musaiger A139
  200. Mwaniki E140
  201. Myhre J141
  202. Nagalla B142
  203. Naska A143
  204. Zeba AN144
  205. Ng SW145
  206. Ngoan LT146
  207. Noshad S147
  208. Ochoa A147
  209. Ocke M148
  210. Odenkirk J149
  211. Oleas M149
  212. Olivares S150
  213. Orfanos P150
  214. Ortizulloa J151
  215. Otero J152
  216. Ovaskainen ML95
  217. Pakseresht M95
  218. Palacios C154
  219. Palmer P155
  220. Pan WH156
  221. Panagiotakos D156
  222. Parajuli R141
  223. Pekcan G141
  224. Petrova S158
  225. Piaseu N159
  226. Pitsavos C160
  227. Polasa K161
  228. Posada L92
  229. Pourfarzi F163
  230. Preston AM163
  231. Rached I164
  232. Rahbar AR164
  233. Rehm C165
  234. Richter A165
  235. Riley L166
  236. Salanave B166
  237. Sawada N167
  238. Tsugane S168
  239. Sekiyama M169
  240. Selamat R169
  241. Shamsuddin K170
  242. Sharma S171
  243. Sinkko H172
  244. Sioen I173
  245. Sisa I117
  246. Skeaff S117
  247. Steingrimsdottir L175
  248. Strand T176
  249. Suarezortegon MF176
  250. Swaminathan S177
  251. Swan G178
  252. Sygnowska E178
  253. Szabo M179
  254. Szponar L180
  255. Khouw I181
  256. Ng SA181
  257. Tapanainen H181
  258. Tayyem R181
  259. Tedla B182
  260. Tedstone A183
  261. Templeton R184
  262. Termote C185
  263. Thanopoulou A186
  264. Trichopoulos D187
  265. Trichopoulou A187
  266. Oosterhout CV188
  267. Vartiainen E189
  268. Virtanen S189
  269. Vollenweider P175
  270. Vossenaar M155
  271. Warensjo E155
  272. Waskiewicz A185
  273. Wieler L185
  274. Wu S166
  275. Yaakub R170
  276. Yap M171
  277. Yusof S172
  278. Zaghloul S172
  279. Zajkas G172
  280. Zapata ME173
  281. Zarina K117
  282. Zohoori FV117
  283. Manary M117
  284. Bukania Z175
  285. Kombe Y176
  286. Vaask S180
  287. Long J181
  288. Hambidge KM181
  289. Diba TS181
  290. Mastiholi SC181
  291. Khan US181
  292. Tejeda G181
  293. Nurk E182
  294. Nelis K183
  295. Nothlings U183
  296. Alexy U183
  297. Tudorie C184
  298. Nicolau A184
  299. Souza ADM185
  300. Brauw AD186
  301. Moursi M186
  302. Rovirosa A187
  303. Henry C188
  304. Ersino G188
  305. Zello G188
  306. Luangphaxay C189
  307. Douangvichit D189
  308. Siengsounthone L189
  309. Hotz C190
  310. Rybak C190
  311. Zugravu CA191
  312. Baykova D192
  313. Yakesjimenez E193
  314. Keding GB194
  315. Waswa LM195
  316. Jordan I196
  317. Meenakshi JV197
  318. Desnacido J198
  319. Agdeppa IA198
  320. Chileshe J199
  321. Mwanza S199
  322. Sundram K157
  323. Eleraky L174
  324. Stuetz W174
  325. Rangelova L162
  326. Aluso L162
  327. Boedecker J162
  328. Oduor F162
  329. Serramajem L109
  330. Asayehu TT136
  331. Janska V134
  332. Siamusantu W95
  333. Brown K153

Source: BMJ Open Published:2024


Abstract

Objective When considering proposals to improve diets, it is important to understand how factors like price and income can affect saturated fat (SF) intake and demand. In this study, we examine and estimate the influence of price and income on intake across 160 countries, by age and sex, and derive sensitivity measures (price elasticities) that vary by age, sex and world region. Design We econometrically estimate intake responsiveness to income and prices across countries, accounting for differences by world region, age and sex. Intake data by age, sex and country were obtained from the 2018 Global Dietary Database. These data were then linked to global price data for select food groups from the World Bank International Comparison Programme and income data from the World Development Indicators Databank (World Bank). Results Intake differences due to price were highly significant, with a 1% increase in price associated with a lower SF intake (% energy/d) of about 4.3 percentage points. We also find significant differences across regions. In high-income countries, median (age 40) intake reductions were 1.4, 0.8 and 0.2 percentage points, given a 1% increase in the price of meat, dairy, and oils and fats, respectively. Price elasticities varied with age but not sex. Intake differences due to income were insignificant when regional binary variables were included in the analysis. Conclusion The results of this study show heterogeneous associations among prices and intake within and across countries. Policymakers should consider these heterogeneous effects as they address global nutrition and health challenges. © 2024 BMJ Publishing Group. All rights reserved.
Other Related Docs
9. The Effects of the Re-Imposition of Us Sanctions on Food Security in Iran, International Journal of Health Policy and Management (2022)
12. Higher Glycemic Index and Load Could Increase Risk of Dyslipidemia, International Journal of Nutrition Sciences (2023)