Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
A Hybrid Graph-Based Approach for Right Ventricle Segmentation in Cardiac Mri by Long Axis Information Transition Publisher Pubmed



Ghelich Oghli M1 ; Mohammadzadeh A2 ; Kafieh R3 ; Kermani S4
Authors

Source: Physica Medica Published:2018


Abstract

Right ventricle segmentation is a challenging task in cardiac image analysis due to its complex anatomy and huge shape variations. In this paper, we proposed a semi-automatic approach by incorporating the right ventricle region and shape information into livewire framework and using one slice segmentation result for the segmentation of adjacent slices. The region term is created using our previously proposed region growing algorithm combined with the SUSAN edge detector while the shape prior is obtained by forming a signed distance function (SDF) from a set of binary masks of the right ventricle and applying PCA on them. Short axis slices are divided into two groups: primary and secondary slices. A primary slice is segmented by the proposed modified livewire and the livewire seeds are transited to a pre-processed version of upper and lower slices (secondary) to find new seed positions in these slices. The shortest path algorithm is applied on each pair of seeds for segmentation. This method is applied on 48 MR patients (from MICCAI’12 Right Ventricle Segmentation Challenge) and yielded an average Dice Metric of 0.937 ± 0.58 and the Hausdorff Distance of 5.16 ± 2.88 mm for endocardium segmentation. The correlation with the ground truth contours were measured as 0.99, 0.98, and 0.93 for EDV, ESV and EF respectively. The qualitative and quantitative results declare that the proposed method outperforms the state-of-the-art methods that uses the same dataset and the cardiac global functional parameters are calculated robustly by the proposed method. © 2018
3. Segmentation of Gbm in Mri Images Using an Efficient Speed Function Based on Level Set Method, Proceedings - 2017 10th International Congress on Image and Signal Processing# BioMedical Engineering and Informatics# CISP-BMEI 2017 (2017)
Experts (# of related papers)