Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Pharmacogenetic Study on the Impact of Rivastigmine Concerning Genetic Variants of A2m and Il-6 Genes on Iranian Alzheimer’S Patients Publisher Pubmed



Zamani M1, 2 ; Mohammadi M1 ; Zamani H1 ; Tavasoli A3
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Neurogenetics, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
  2. 2. Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Department of Neurology, Children Medical Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Source: Molecular Neurobiology Published:2016


Abstract

Alzheimer's disease (AD) is a polygenic and multifactorial disease with a complex inheritance caused by the formation of amyloid plaques and neurofibrillary tangles in the brain. Increasing evidence indicates that many genes including interleukin-6 (IL-6) and alpha 2-macroglobulin (A2M) may contribute to the pathogenesis of AD. The A2M gene encodes α2-macroglobulin which specifically binds with the beta-amyloid peptides and prevents fibril formation. Protein of the IL-6 gene linked to beta-amyloid (βA) aggregation was detected in βA plaques in the brain of AD patients. The aim of the present study is to investigate the relationship of the IL-6 and A2M gene polymorphisms with AD and also the impact of rivastigmine on AD patients regarding their genotypes on IL-6 and A2M genes in 150 Iranian AD patients under rivastigmine therapy and 150 matched healthy controls. The results indicated that IL-6 G and C alleles had significant positive and negative association with AD, respectively, (P = 0.0001, relative risks (RR) = 1.39) and frequency of AD patients carrying IL-6 GG genotype was significantly in higher proportion in familial Alzheimer’s disease (FAD) patients compared to controls (P = 0.02, RR = 2.25), and the IL-6 CC genotype was significantly protective against AD (P = 0.0003, RR = 0.65). Genotype analysis of A2M gene showed a significant positive correlation between A2M AA genotype and the AD patients (sporadic Alzheimer’s disease (SAD) and FAD) (P = 0.001, RR = 1.56), proposing it as a possible risk factor for AD. Drug response from pharmacogenetic viewpoint after 3-year follow-up of AD patients and Clinical Dementia Rating (CDR) analysis demonstrated that AD patients carrying bigenic genotype IL-6 CC-A2M AG (ΔCDR = 4.5) and male patients with IL-6 CC genotype (ΔCDR = 3.83) provided the best response and the A2M GG genotype (ΔCDR = 7.97) and bigenic genotype IL-6 GG-A2M GG (ΔCDR = 8.5) conferred the worst response to the rivastigmine, suggesting likely involvement of genotype-specific response to rivastigmine therapy in AD patients. The results also propose that in view of the fact that C and G alleles created by nucleotide changes in the promoter region of IL-6 gene and this may affect the expression of the IL-6 gene and, hence, susceptible and protective role of GG and CC genotype in AD might be caused by higher and lower expression of IL-6 cytokine, respectively. © 2015, Springer Science+Business Media New York.