Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Low-Dose 90Y Pet/Ct Imaging Optimized for Lesion Detectability and Quantitative Accuracy: A Phantom Study to Assess the Feasibility of Pretherapy Imaging to Plan the Therapeutic Dose Publisher Pubmed



Khazaee M1 ; Kamaliasl A1 ; Geramifar P2 ; Rahmim A3, 4
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, 1983969411, GC, Iran
  2. 2. Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
  4. 4. Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States

Source: Nuclear Medicine Communications Published:2017


Abstract

Objective The overall aim of this work is to optimize the reconstruction parameters for low-dose yttrium-90 (90Y) PET/CT imaging, and to determine 90Y minimum detectable activity, in an endeavor to investigate the feasibility of performing low-dose 90Y imaging in-vivo to plan the therapeutic dose in radioembolization. Materials and methods This study was carried out using a Siemens Biograph 6 True Point PET/CT scanner. A Jaszczak phantom containing five hot syringes was imaged serially over 15 days. For 128 reconstruction parameters/algorithms, detectability performance and quantitative accuracy were evaluated using the contrast-to-noise ratio and the recovery coefficient, respectively. Results For activity concentrations greater than 2.5 MBq/ml, the linearity of the scanner was confirmed while the corresponding relative error was below 10%. Reconstructions with smaller numbers of iterations and smoother filters led to higher detectability performance, irrespective of the activity concentration and lesion size. In this study, the minimum detectable activity was found to be 3.28±10% MBq/ml using the optimized reconstruction parameters. Although the recovered activities were generally underestimated, for lesions with activity concentration greater than 4 MBq/ml, the amount of underestimation is limited to -15% for optimized reconstructions. Conclusion 90Y PET/CT imaging, even with a low activity concentration, is feasible for depicting the distribution of 90Y implanted microspheres using optimized reconstruction parameters. As such, in-vivo PET/CT imaging of low-dose 90Y in the pretherapeutic stage may be feasible and fruitful to optimally plan the therapeutic activity delivered to patients undergoing radioembolization. Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.