Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Advanced Surface Treatment Techniques Counteract Biofilm-Associated Infections on Dental Implants Publisher



Koopaie M1, 2 ; Bordbarkhiabani A3 ; Kolahdooz S4 ; Darbandsari AK1, 5 ; Mozafari M6
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Oral Medicine, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
  4. 4. Universal Scientific Education and Research Network (USERN), Tehran, Iran
  5. 5. School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
  6. 6. Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

Source: Materials Research Express Published:2020


Abstract

Topography and surface chemistry can significantly affect biofilm formation on dental implants. Recently, the γ-TiAl alloy was considered as the most reliable candidates for the preparation of dental implants because of its excellent mechanical strength, chemical stability and biocompatibility. The emphasis of this study lies in the effects of high-speed milling assisted the minimum quantity of lubrication (HSM-MQL), micro-current wire electrical discharge machining (mWEDM), Er,Cr:YSGG laser and sandblasting/large-grit/acid-etching (SLA) treatments on surface morphology, topography, chemical composition, wettability and biofilm-associated infections on the surface of each group. The surface-treated samples were analyzed using a scanning electron microscope (SEM), SEM surface reconstruction, energy dispersive x-ray spectroscopy (EDS) and water contact angle measuring system. SEM and topography images of mWEDM and laser-treated surfaces showed more irregular surfaces compared to SLA and HSM-MQL surfaces. Results showed that mWEDM and laser-treated surfaces revealed hydrophobic behavior. A significant decrease of biofilm formation was observed on mWEDM treated surface due to the hydrophobicity and existence of the copper element in the recast layer chemical composition. Moreover, EDS confirmed that the zirconium, silicon, and fluorine elements were decorated onto the SLA treated γ-TiAl surface that can have a direct effect on the anti-bacterial activity. © 2020 The Author(s). Published by IOP Publishing Ltd.