Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Enhancing the Antiviral Potential and Anti-Inflammatory Properties of Astragalus Membranaceus: A Comprehensive Review Publisher Pubmed



Ghabeshi S1, 2 ; Mousavizadeh L3 ; Ghasemi S4
Authors
Show Affiliations
Authors Affiliations
  1. 1. Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  3. 3. Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
  4. 4. Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Source: Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry Published:2023


Abstract

The role of herbal medicines in the treatment of viruses and the identification of potential antiviral drugs has been the focus of researchers for decades. The control and treatment of viral diseases are very important due to the evolution of viruses and the emergence of new viruses compared to other pathogens such as fungi and bacteria. Astragalus membranaceus (AM) is a significant medicinal plant. The potential use of this plant and its chemical components in the treatment of inflammatory illnesses and viral diseases has been vigorously researched recently. Astragalus polysaccharides (APS) make up the majority of AM's ingredients. The main mechanisms of the antiviral effect of APS have been investigated in some studies. The results of these studies show that APS can exert its antiviral effect by enhancing type I IFN signaling, inhibiting the expression of Bax and Caspase-3 proteins in the apoptosis pathway, and other antiviral mechanisms such as anti-inflammatory activities. The most wellknown inflammatory products of APS's antiviral effects are B-cell proliferation, antibody products, nuclear factor-kappa B (NF-κB), and IL(s). Although it has a known effectiveness, there are some limitations to this substance's use as medicine. The use of nanotechnology is removing these limitations and its ability to be used as an anti-virus agent. The purpose of this review is to emphasize the role of AM, especially APS, in controlling inflammatory pathways in the treatment of viral infections. With the emergence of these herbal medications, a new path has been opened in the control and treatment of viral infections. © 2023 Bentham Science Publishers.