Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Towards a Better Diagnosis of Prostate Cancer: Application of Machine Learning Algorithms Publisher



Saeedi S1 ; Maghooli K2 ; Amirazodi S3 ; Rezayi S1
Authors

Source: Frontiers in Health Informatics Published:2022


Abstract

Introduction: Prostate cancer is one of the leading causes of death in men, and the early detection of this disease can be a significant factor in controlling and managing it. Applying data mining techniques can lead to the extraction of hidden knowledge from a huge amount of data and can help diagnose this disease by physicians. This study aims to determine the algorithm with the best performance to diagnose prostate cancer. Material and Methods: In this study, nine data mining techniques, including Support Vector Machine, Decision Tree, Naive Bayes, K-Nearest Neighbors, Neural Network, Random Forest, Deep Learning, Auto-MLP, and Rule Induction algorithms, were used to extract hidden patterns from prostate cancer data. In this study, the data of 100 patients, which included eight characteristics, were used, and the RapidMiner Studio environment was employed for modeling. To compare the performance of the mentioned approaches used in this study to diagnose prostate cancer, accuracy, recall, precision, AUC, sensitivity, and specificity were calculated and reported for all techniques. Results: The results of this study showed that the accuracy of the applied algorithms was between 77% and 84%. Using different criteria to evaluate the techniques used showed that the two algorithms K-Nearest Neighbors and Neural Network, had better performance and accuracy (84%) than other methods. The sensitivity in these two algorithms was 80% for Neural Networks and 85% for K-Nearest Neighbors, respectively. Conclusion: The usage of different data mining techniques can lead to the discovery of hidden patterns among an enormous amount of data related to prostate cancer, and as a result, it leads to the early diagnosis of this disease and saves the subsequent costs. © 2022, Published by Frontiers in Health Informatics.
Other Related Docs
5. Application of Data Mining Techniques in Predicting Coronary Heart Disease: A Systematic Review, International Journal of Environmental Health Engineering (2021)
16. Prediction and Control of Stroke by Data Mining, International Journal of Preventive Medicine (2013)
18. Unsupervised Fuzzy Cognitive Map in Diagnosis of Breast Epithelial Lesions, 2015 22nd Iranian Conference on Biomedical Engineering, ICBME 2015 (2016)