Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Prostate Cancer and Benign Prostatic Hyperplasia Lesions Segmentation Using Diffusion Kurtosis Imaging, T2*, and R2* Mapping With U-Net++ Algorithm Publisher Pubmed



Nematollahi H ; Alikhani F ; Shahbazigahrouei D ; Moslehi M ; Farzadniya A ; Shamsinejadbabaki P
Authors

Source: Radiological Physics and Technology Published:2025


Abstract

This study aimed to propose a deep learning-based segmentation framework to delineate prostate lesions across multiple MRI acquisitions and derived parametric maps, including apparent diffusion coefficient (ADC) map, diffusion kurtosis imaging (DKI)-derived parameter maps (D map and K map), T2-weighted imaging (T2WI), and T2*-weighted imaging-derived parameter maps (T2* map and R2* map). Then, a comparison was conducted among the model’s segmentation performance across MRI-derived images to identify those that provide the most discriminative information for accurate lesion identification. 51 patients underwent multiparametric MRI sequences, which included T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and T2*-weighted images. Three expert radiologists conducted manual lesion annotations. All images were preprocessed, labeled, and augmented before training the U-Net++ model. The segmentation model's performance was evaluated using Dice similarity coefficient, Intersection over Union (IoU), sensitivity, and specificity metrics. The IoU values for the ADC map, D map, K map, T2WI, T2* map, and R2* map were 0.8907, 0.8559, 0.9504, 0.9250, 0.9441, and 0.8781, respectively. The corresponding Dice coefficient scores were 0.9416, 0.9211, 0.9744, 0.9604, 0.9709, and 0.9342. These results indicate a significant degree of overlap between the predicted and ground truth segmentation masks. These findings emphasize the complementary value of combining optimized deep learning architectures with advanced MRI-derived images, which could enhance diagnostic precision and facilitate more informed clinical decision-making. © 2025 Elsevier B.V., All rights reserved.