Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
An Innovative Cell Selection Approach in Developing Human Cells Overexpressing Aspartyl/Asparaginyl Β-Hydroxylase Publisher



Bakhtiari H1 ; Palizban AA1 ; Khanahmad H2 ; Mofid MR1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
  2. 2. Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Source: Research in Pharmaceutical Sciences Published:2020


Abstract

Background and purpose: Aspartyl/asparaginyl β-hydroxylase (ASPH) is abundantly expressed in malignant neoplastic cells. The establishment of a human cell line overexpressing ASPH could provide the native-like recombinant protein needed for developing theranostic probes. In the process of transfection, the obtained cells normally contain a range of cells expressing the different levels of the target of interest. In this paper, we report on our simple innovative approach in the selection of best-transfected cells with the highest expression of ASPH using subclone selection, quantitative real-time polymerase chain reaction, and gradual increment of hygromycin concentration. Experimental approach: To achieve this goal, human embryonic kidney (HEK 293T) cells were transfected with an ASPH-bearing pcDNA3.1/Hygro(+) vector. During antibiotic selection, single accumulations of the resistant cells were separately cultured and the ASPH mRNA levels of each flask were evaluated. The best subclones were treated with a gradually increasing amount of hygromycin. The ASPH protein expression of the obtained cells was finally evaluated using flow cytometry and immunocytochemistry. Findings / Results: The results showed that different selected subclones expressed different levels of ASPH. Furthermore, the gradual increment of hygromycin (up to 400mg/mL) improved the expression of ASPH. The best relative fold change in mRNA levels was 57.59 ± 4.11. Approximately 90.2% of HEKASPHcells overexpressed ASPH on their surface. Conclusion and implications: The experiments indicated that we have successfully constructed and evaluated a recombinant human cell line overexpressing ASPH on the surface. Moreover, our innovative selection approach provided an effective procedure for enriching highly expressing recombinant cells. © 2021 American Society of Civil Engineers (ASCE). All rights reserved.