Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Advanced Modeling of Conductivity in Graphene–Polymer Nanocomposites: Insights Into Interface and Tunneling Characteristics Publisher



Zare Y1 ; Munir MT2 ; Rhee KY3 ; Park SJ4
Authors
Show Affiliations
Authors Affiliations
  1. 1. Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
  2. 2. College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
  3. 3. Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin, South Korea
  4. 4. Department of Chemistry, Inha University, Incheon, 22212, South Korea

Source: Carbon Letters Published:2024


Abstract

In this work, the depth of the interphase in graphene polymer systems is determined by the properties of graphene and interfacial parameters. Furthermore, the actual volume fraction and percolation onset of the nanosheets are characterized by the actual inverse aspect ratio, interphase depth, and tunneling distance. In addition, the dimensions of graphene, along with interfacial/interphase properties and tunneling characteristics, are utilized to develop the power-law equation for the conductivity of graphene-filled composites. Using the derived equations, the interphase depth, percolation onset, and nanocomposite conductivity are graphed against various ranges of the aforementioned factors. Moreover, numerous experimental data points for percolation onset and conductivity are presented to validate the equations. The optimal levels for interphase depth, percolation onset, and conductivity are achieved through high interfacial conductivity and large graphene nanosheets. In addition, increased nanocomposite conductivity can be attained with thinner nanosheets, a larger tunneling distance, and a thicker interphase. The calculations highlight the considerable impacts of interfacial/interphase factors and tunneling distance on the percolation onset. The highest nanocomposite conductivity of 0.008 S/m is acquired by the highest interfacial conduction of 900 S/m and graphene length (D) of 5 μm, while an insulated sample is observed at D < 1.2 μm. Therefore, higher interfacial conduction and larger nanosheets cause the higher nanocomposite conductivity, but the short nanosheets cannot promote the conductivity. © The Author(s), under exclusive licence to Korean Carbon Society 2024.
Other Related Docs
16. From Nano to Macro in Graphene-Polymer Nanocomposites: A New Methodology for Conductivity Prediction, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2024)
23. Predicting of Electrical Conductivity for Polymer-Mxene Nanocomposites, Journal of Materials Research and Technology (2024)