Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Enzyme Inhibition, Kinetic, and Molecular Docking Studies of Α-Glucosidase Publisher



Moghadam ES1 ; Faramarzi MA2 ; Imanparast S2 ; Amini M1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  2. 2. Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran

Source: Current Enzyme Inhibition Published:2020


Abstract

Background: Diabetes mellitus (DM) is an important global health problem especially in developed countries and insufficient lifestyle induces this phenomenon. Finding efficient treatment for DM is an interesting goal for researchers. Objective: Herein we tried to design and synthesize a series of quinazoline derivatives and investigate their bioactivity as possible α-Glucosidase inhibitor agents. Method: Compounds 1-14 were synthesized using a multicomponent reaction. 1HNMR, 13C NMR, MS, and IR spectroscopy were used for the characterization of synthesized compounds. α-Glucosidase inhibitory activity of compounds 1-14 was evaluated using p-nitrophenyl‐α‐D-glucopyranoside (pNPG) as a substrate of the α-glucosidase enzyme (EC3.2.1.20, Saccharomyces cerevisiae). The mechanism of inhibition of the α-glucosidase enzyme was investigated using kinetic studies. Molecular docking was also done using autodock software to find the possible mode of interaction of compound 8 and the enzyme active site. Results: Most of the tested compounds showed higher activity in inhibition of the enzyme in comparison to the standard, acarbose. Compound 8 exerted the best activity with the IC50 value of 291.5 µM. A kinetic study indicated a competitive inhibition of the α-glucosidase enzyme by compound 8. Finally, docking studies showed the interactions between compound 8 and enzyme active site resi-dues. Conclusion: 2,4-Diarylquinazoline scaffold has good antidiabetic activity, so it is interesting to synthesize more 2,4-diarylquinazoline derivatives and evaluate their antidiabetic activities. © 2020 Bentham Science Publishers.
Experts (# of related papers)
Other Related Docs