Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Effect of Different Surface Treatments on Surface Roughness, Phase Transformation, and Biaxial Flexural Strength of Dental Zirconia Publisher



Yahyazadehfar N1 ; Zavaree MA1 ; Shayegh SS1 ; Yahyazadehfar M2 ; Hooshmand T3 ; Hakimaneh SMR1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Prosthodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
  2. 2. Independent Investigator, DE, United States
  3. 3. Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Source: Journal of Dental Research# Dental Clinics# Dental Prospects Published:2021


Abstract

Background. Interfacial failures at the cement‒restoration interface highlights the importance of effective surface treatment with no adverse effect on the zirconia’s mechanical properties. This study aimed to determine the effect of different surface treatments on dental graded zirconia’s surface roughness and certain mechanical properties. Methods. Forty sintered zirconia specimens were randomly divided into four groups (n = 10): control (no surface treatment), sandblasting (SA), grinding with diamond bur (GB), and Er,Cr:YSGG laser (LS). Following surface treatment, the surface roughness and surface topography of the specimens were examined. X-ray diffraction (XRD) was conducted. In addition, the biaxial flexural strengths of specimens were evaluated. The data were analyzed using one-way analysis of variance (ANOVA) and post hoc Tukey tests; the Pearson correlation coefficient was calculated between either volumetric percentage of monoclinic phase or roughness and flexural strength of specimens (α = 0.05). Results. The GB group exhibited significantly greater surface roughness compared to the other groups (P < 0.005). The LS and control groups exhibited a significantly lower volumetric percentage of the monoclinic phase (P < 0.001) than the GB and SA treatments. The SA group exhibited significantly higher flexural strength than the control (P = 0.02) and GB groups (P < 0.01). Furthermore, the Weibull analysis for the LS showed higher reliability for the flexural strength than other treatments. Conclusion. Er,Cr:YSGG laser treatment, with the lowest extent of phase transformation and reliable flexural strength, can be a promising choice for surface treatment of zirconia. © 2021 The Author(s).