Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Upregulation of Hsa-Mir-625-5P Inhibits Invasion of Acute Myeloid Leukemia Cancer Cells Through Ilk/Akt Pathway Publisher



Dehkordi SS1 ; Mousavi SH1 ; Ebrahimi M2, 3 ; Alizadeh S1 ; Asl AAH2, 3 ; Mohammad M2 ; Aliabedi B1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  3. 3. Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

Source: Cell Journal Published:2022


Abstract

Objective: Acute myeloid leukemia (AML) is characterized by abnormalities of differentiation and growth of primary hematopoietic stem cells (HSCs) in the blood and bone marrow. In many studies, miR-625-5p has been shown to inhibit downstream pathways from affecting the metastasis and invasion of the integrin-linked kinase (ILK) signaling pathway. It has been proved that the expression of miR-625-5p decreases in AML cell lines. This study aimed to investigate the effect of miR-625-5p upregulation on the invasion of KG1 ell line in vitro. Materials and Methods: In this experimental study, we investigated the impact of upregulation of miR-625-5p on invasion via the ILK/AKT pathway in the KG1 cell line. After transfection using the viral method, the cellular invasion was assessed by invasion assay and the levels of miR-625-5p genes and protein were evaluated by quantitative polymerase chain reaction (qPCR) and western blotting. Moreover, CXCR4 level was assessed by flow cytometry. Results: The invasion significantly reduced in MiR-625-5p-transfected KG1 cells (P<0.01) that was concomitant with remarkably decreasing in the expression levels of ILK, NF-κB, and COX2 genes compare with the control group (P<0.01). Incontrast, MMP9, AP1, and AKT significantly increased (P<0.01, P<0.001 and P<0.01, respectively) and GSK3β did not change significantly in MiR-625-5p-transfected KG1 cells. The protein level of NF-κB decreased (P<0.01) and MMP9 increased, however it was not significant. Moreoever, the expression of CXCR4 was significantly lower (P<0.01) in comparison with the control group. Conclusion: miR-625-5p leads to a reduction in cell invasion in the AML cell line through ILK pathway. Therefore, it could be a breakthrough in future AML-related research. However, further studies are needed to support this argument. © 2022 Royan Institute (ACECR). All rights reserved.