Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Preparation, Optimization, and In-Vitro Evaluation of Aspirin/Peg Solid Dispersions Using Subcritical Co2 by Response Surface Methodology Publisher



Rostamian H1 ; Lotfollahi MN1 ; Mohammadi A2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, 35196-45399, Iran
  2. 2. Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Source: Korean Journal of Chemical Engineering Published:2020


Abstract

This study reports on the preparation, optimization, and in vitro evaluation of micronized solid dispersions containing Polyethylene Glycol 4000 (PEG4000) and aspirin to increase the dissolution rate of aspirin in water. To achieve this goal, aspirin/PEG4000 composites were prepared and characterized by applying a solid dispersion method with subcritical CO2. Employing response surface methodology (RSM) using the Box-Behnken design (BBD), the effects of different variables including pressure, concentration, drug/polymer ratio, and their interactions on drug content and yield of production were investigated. The closeness between the measured and predicted responses with R2>0.99 demonstrated the validity of the statistical analysis. The optimal formulation obtained from RSM is at a pressure of 63.5 bar, concentration of 0.17 g/gSolution, and drug/polymer ratio of 1. Under the optimized condition, the yield of production and drug content % reached 91.5% and 54.5%, respectively. Dissolution tests carried out in buffer phosphate solution at pH 7.4 showed a significant improvement in dissolution rate, with a rate approximately seven times faster than unprocessed aspirin. In addition, the in vitro drug release profile of produced composites showed an initial burst release of more than 80% in the first 2 min. © 2020, The Korean Institute of Chemical Engineers.