Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
The Comparative Performance of Wavelet-Based Outbreak Detector, Exponential Weighted Moving Average, and Poisson Regression-Based Methods in Detection of Pertussis Outbreaks in Iranian Infants: A Simulation-Based Study Publisher Pubmed



Alimohamadi Y1 ; Zahraei SM2 ; Karami M3 ; Yaseri M1 ; Lotfizad M4 ; Holakouienaieni K1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
  3. 3. Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
  4. 4. School of Electrical & Computer Engineering, Tarbiat Modares University, Tehran, Iran

Source: Pediatric Pulmonology Published:2020


Abstract

Background: Early detection of outbreaks of transmissible diseases is essential for public health. This study aimed to determine the performance of the wavelet-based outbreak detection method (WOD) in detecting outbreaks and to compare its performance with the Poisson regression-based model and exponentially weighted moving average (EWMA) using data of simulated pertussis outbreaks in Iran. Method: The data on suspected cases of pertussis from 25th February 2012 to 23rd March 2018 in Iran was used. The performance of the WOD (Daubechies 10 [db10] and Haar wavelets), Poisson regression-based method, and EWMA Compared in terms of timeliness and detection of outbreak days using the simulation of different outbreaks. In the current study, two simulations were used, one based on retrospectively collected data (literature-based) on pertussis cases and another one on a synthetic dataset created by the researchers. The sensitivity, specificity, false alarm, and false-negative rate, positive and negative likelihood ratios, under receiver operating characteristics areas, and median timeliness were used to assess the performance of the methods. Results: In a literature-based outbreak simulation, the highest and lowest sensitivity, false negative in the detection of injected outbreaks were seen in db10, with sensitivity 0.59 (0.56-0.62), and Haar wavelets with 0.57 (0.54-0.60). In the researcher simulated data, the EWMA (K = 0.5) with sensitivity 0.92 (0.90-0.94) had the best performance. About timeliness, the WOD methods showed the best performance in the early warning of the outbreak in both simulation approaches. Conclusion: Performance of the WOD in the early alarming outbreaks was appropriate. However, this method would be best used along with other methods of public health surveillance. © 2020 Wiley Periodicals LLC