Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Time Series Analysis and Spatial Distribution Map of Aggregate Risk Index Due to Tropospheric No2 and O3 Based on Satellite Observation Publisher Pubmed



Shojaei Baghini N1 ; Falahatkar S1 ; Hassanvand MS2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Environmental Sciences, Natural Resources Faculty, Tarbiat Modares University, Noor, Iran
  2. 2. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Source: Journal of Environmental Management Published:2022


Abstract

A high increase in human activities has led to more emission of air pollutants in metropolises and industrial areas. Recently, remotely sensed data of tropospheric pollutants is used for environmental management and decision-making on large scale. The purpose of this study was a time series analysis of nitrogen dioxide Vertical Column Density (NO2 VCD) and Ozone (O3) using Ozone Monitoring Instrument (OMI) from 2005 to 2016 by Mann-Kendall test. Also, the aggregate risk index (ARI) was calculated to estimate the overall impact of exposure to tropospheric NO2 and O3 concentrations at the national scale in 2016. To estimate the surface NO2 related drivers, The Radial Basis Function (RBF) neural network modeling was performed for different months of 2016. Results of Mann-Kendall test showed that tropospheric ozone concentration had an increasing trend in all parts of Iran and this increasing trend was significantly higher in the southern region of Iran and lower in the northern parts of Iran. NO2 VCD in most parts of Iran had a significant increasing trend. The result of sensitivity analysis showed that NO2 VCD (1.25), the distance to the industrial area, (1.20) and wind speed (1.07) were the most important variables for the estimation of surface NO2 concentration. Spatial ARI with the highest risks is mainly located in the Northern half of Iran, especially in Tehran, Alborz, and Khorasan-e− Razavi provinces, where NO2 and O3 concentrations are very severe. In northern Iran and central cities, the ARI values are calculated from 1.5 to 2.08, indicating the highest human health risks in these regions. The human health risks based on OMI observation were obtained higher in comparison to AQM data because the satellite data coverage is larger than AQM station and monitors transmitted air pollution by the wind in addition to local pollution. Based on this research, using satellite observation for air quality monitoring is a suitable tool for environmental management on a national scale. © 2021 Elsevier Ltd