Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Analysis of Injuries and Deaths From Road Traffic Accidents in Iran: Bivariate Regression Approach Publisher Pubmed



Shahsavari S1 ; Mohammadi A1 ; Mostafaei S2, 3 ; Zereshki E2 ; Tabatabaei SM4 ; Zhaleh M5 ; Shahsavari M6 ; Zeini F2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Health Information Technology, Faculty of Allied Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
  2. 2. Department of Biostatistics, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
  3. 3. Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
  4. 4. Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
  5. 5. Department of Anatomy and Cell Biology, Medicine Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
  6. 6. Imam Ali Hospital Heart Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Source: BMC Emergency Medicine Published:2022


Abstract

Backgrounds: This study aims to estimate and compare the parameters of some univariate and bivariate count models to identify the factors affecting the number of mortality and the number of injured in road accidents. Methods: The accident data used in this study are related to Kermanshah province in march2020 to march2021. Accidents areas were divided into 125 areas based on density characteristics. In a one-year period, 3090 accidents happened on the suburban roads of Kermanshah province, which resulted in 398 deaths and 4805 injuries. Accident information, including longitude and latitude of accident location, type of accident (fatal and injury), number of deaths, number of injuries, accident type, the reason of the accident, and the kind of accident were all included as population-level variables in the regression models. We investigated four frequently used bivariate count regression models for accident data in the literature. Results: In bivariate analysis, except for the DNM model, there is a reasonable decrease in the AIC measures of the saturated model compared to the reduced model for the other three models. For the injury models, MSE is lowest, respectively for DIBP (137.87), BNB (289.46), BP (412.36) and DNM (3640.89) models. These results are also established for death models. But, in univariate analysis, only injury models almost present reasonable results. Conclusions: Our findings show that the IDBP model is better suitable for evaluating accident datasets than other models. Motorcycle accidents, pedestrian accidents, left turn deviance, and dangerous speeding were all significant variables in the IDBP death model, and these parameters were linked to accident mortality. © 2022, The Author(s).