Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Evaluating Machine Learning Models for Post-Surgery Treatment Response Assessment in Glioblastoma Multiforme: A Comparative Study of Gray Level Co-Occurrence Matrix (Glcm), Curvelet, and Combined Radiomics Features Selected by Multiple Algorithms Publisher



S Alibabaei SANAZ ; M Yousefipour MOHAMMAD ; M Rahmani MASOUMEH ; S Raminfard SAMIRA ; M Tahmasbi MARZIYEH
Authors

Source: BMC Medical Imaging Published:2025


Abstract

Background: Developing quantitative methods to assess post-surgery treatment response in Glioblastoma Multiforme (GBM) is critical for improving patient outcomes and refining current subjective approaches. This study analyzes the performance of machine learning models trained on radiomic datasets derived from magnetic resonance imaging (MRI) scans of GBM patients. Methods: MRI scans from 143 GBM patients receiving adjuvant therapy post-surgery were acquired and preprocessed. A total of 92 radiomic features, including 68 Gy-level co-occurrence matrix (GLCM)-based features calculated in four directions (0°, 45°, 90°, and 135°) and 24 Curvelet coefficient-based features, were extracted from each patient’s segmented tumor cavity. Machine learning classifiers, including Support Vector Machine (SVM), Random Forest, K-Nearest Neighbors (KNN), AdaBoost, CatBoost, LightGBM, XGBoost, Gaussian Naive Bayes (GNB), and Logistic Regression (LR), were trained on the extracted radiomics selected using sequential feature selection, LASSO, and PCA. Validation was performed with 10-fold cross-validation. Results: The proposed pipeline achieved an accuracy of 87% in classifying post-surgery treatment responses in GBM patients. This accuracy was achieved with the SVM trained on a combination of GLCM and Curvelet-based radiomics selected via forward sequential algorithm-8, and with KNN trained on GLCM and Curvelet radiomics combination selected using LASSO (alpha = 0.01). The LR model trained on Curvelet-based LASSO-selected radiomics (alpha = 0.01) also showed strong performance. Conclusion: The results demonstrate that MRI-based radiomics, specifically GLCM and Curvelet features, can effectively train machine learning models to quantitatively assess GBM treatment response. These models serve as valuable tools to complement qualitative evaluations, enhancing accuracy and objectivity in post-surgery outcome assessment. Clinical trial number: Not applicable. © 2025 Elsevier B.V., All rights reserved.
Other Related Docs
6. Machine Learning-Based Overall Survival Prediction in Gbm Patients Using Mri Radiomics, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
14. Lung Cancer Recurrence Prediction Using Radiomics Features of Pet Tumor Sub-Volumes and Multi-Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
19. Non-Invasive Pnet Grading Using Ct Radiomics and Machine Learning, Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (2025)