Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Multimodality Radiomics Prediction of Radiotherapy-Induced the Early Proctitis and Cystitis in Rectal Cancer Patients: A Machine Learning Study Publisher Pubmed



Abbaspour S1, 2 ; Barahman M3 ; Abdollahi H4, 5 ; Arabalibeik H6 ; Hajainfar G7 ; Babaei M8 ; Iraji H8 ; Barzegartahamtan M9 ; Ay MR1, 2 ; Mahdavi SR10, 11
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Department of Radiation Oncology, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
  4. 4. Department of Radiologic Sciences and Medical Physics, Kerman University of Medical Sciences, Kerman, Iran
  5. 5. Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
  6. 6. Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences, Tehran, Iran
  7. 7. Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Science, Tehran, Iran
  8. 8. Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
  9. 9. Clinical Research Development Unit, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  10. 10. Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
  11. 11. Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran

Source: Biomedical Physics and Engineering Express Published:2024


Abstract

Purpose. This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients. Methods. A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity. Results. A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5-1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5-2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT. Conclusion. Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making. © 2023 IOP Publishing Ltd.