Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Development of Computer-Aided Model to Differentiate Covid-19 From Pulmonary Edema in Lung Ct Scan: Edecovid-Net Publisher Pubmed



Velichko E1 ; Shariaty F1 ; Orooji M2 ; Pavlov V1 ; Pervunina T3 ; Zavjalov S1 ; Khazaei R4 ; Radmard AR4
Authors

Source: Computers in Biology and Medicine Published:2022


Abstract

The efforts made to prevent the spread of COVID-19 face specific challenges in diagnosing COVID-19 patients and differentiating them from patients with pulmonary edema. Although systemically administered pulmonary vasodilators and acetazolamide are of great benefit for treating pulmonary edema, they should not be used to treat COVID-19 as they carry the risk of several adverse consequences, including worsening the matching of ventilation and perfusion, impaired carbon dioxide transport, systemic hypotension, and increased work of breathing. This study proposes a machine learning-based method (EDECOVID-net) that automatically differentiates the COVID-19 symptoms from pulmonary edema in lung CT scans using radiomic features. To the best of our knowledge, EDECOVID-net is the first method to differentiate COVID-19 from pulmonary edema and a helpful tool for diagnosing COVID-19 at early stages. The EDECOVID-net has been proposed as a new machine learning-based method with some advantages, such as having simple structure and few mathematical calculations. In total, 13 717 imaging patches, including 5759 COVID-19 and 7958 edema images, were extracted using a CT incision by a specialist radiologist. The EDECOVID-net can distinguish the patients with COVID-19 from those with pulmonary edema with an accuracy of 0.98. In addition, the accuracy of the EDECOVID-net algorithm is compared with other machine learning methods, such as VGG-16 (Acc = 0.94), VGG-19 (Acc = 0.96), Xception (Acc = 0.95), ResNet101 (Acc = 0.97), and DenseNet20l (Acc = 0.97). © 2021
Other Related Docs
13. Lightweight Method for the Rapid Diagnosis of Coronavirus Disease 2019 From Chest X-Ray Images Using Deep Learning Technique, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)