Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Basal Characterization and in Vitro Differentiation of Putative Stem Cells Derived From the Adult Mouse Ovary Publisher Pubmed



Zolbin MM1, 2 ; Ersoy GS3 ; Aliakbari F4 ; Amidi F2 ; Daghigh F5 ; Abbasi M2 ; Johnson J6
Authors
Show Affiliations
Authors Affiliations
  1. 1. Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children’s Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Street 16th Street Keshavarz BLV, Tehran, Iran
  3. 3. Kartal Dr. Lutfi Kirdar Educations and Research Hospital, Istanbul, Turkey
  4. 4. Infertility & Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  5. 5. Department of Physiology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
  6. 6. Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Colorado-Denver, Denver, CO, United States

Source: In Vitro Cellular and Developmental Biology - Animal Published:2020


Abstract

Lately, stem cell approaches have provided new information on reproductive organ function and additionally recommended novel treatment possibilities. The type(s) and differentiation potential of stem cells present in the mammalian ovary are largely unknown; while oogonial stem cells have been reported, we explored the possibility that multipotent stem cells may reside in the ovary and have wide differentiation potential. In this experimental study, homogenates of whole mouse ovaries were sorted using the stem cell surface markers stem cell antigen-1 and stage specific embryonic antigen-1/CD15. Viable double-positive cells 3–10 μm in diameter were evaluated immediately after sorting and after culture using differentiation conditions. Ovarian-derived stem cells were differentiated into the three main cell types: adipocytes, chondrocytes, or osteocytes. The subsequent culture was performed in media containing bone morphogenetic protein 4 (BMP-4) and/or retinoic acid (RA). RA, BMP-4 or the two agents in combination, consistently stimulated germ cell gene expression. RA treatment strongly stimulated germline gene expression and also the development of cells that were morphologically reminiscent of oocytes. The germ cell genes Dazl, Ddx4, Figla, Gdf-9, Nobox, Prdm9, and Sycp-1 were all detected at low levels. Remarkably, treatment with BMP-4 alone significantly increased protein expression of the granulosa cell product anti-Mullerian hormone (AMH). We have shown that an inclusive isolation protocol results in the consistent derivation of multipotent stem cells from the adult ovary; these cells can be differentiated towards the germ cell fate (RA alone), somatic ovarian cell fate as indicated by AMH production (BMP-4 alone), or classical mesenchymal cell types. Taken together, these data suggest the presence of multipotent mesenchymal stem cells in the murine ovary. © 2020, The Society for In Vitro Biology.