Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Supervised Versus Unsupervised Gan for Pseudo-Ct Synthesis in Brain Mr-Guided Radiotherapy Publisher



Mz Kermani Milad ZEINALI ; Mb Tavakoli Mohammad BAGHER ; A Khorasani AMIR ; I Abedi IRAJ ; V Sadeghi VAHID ; A Amouheidari ALIREZA
Authors

Source: Physical and Engineering Sciences in Medicine Published:2025


Abstract

Radiotherapy is a crucial treatment for brain tumor malignancies. To address the limitations of CT-based treatment planning, recent research has explored MR-only radiotherapy, requiring precise MR-to-CT synthesis. This study compares two deep learning approaches, supervised (Pix2Pix) and unsupervised (CycleGAN), for generating pseudo-CT (pCT) images from T1- and T2-weighted MR sequences. 3270 paired T1- and T2-weighted MRI images were collected and registered with corresponding CT images. After preprocessing, a supervised pCT generative model was trained using the Pix2Pix framework, and an unsupervised generative network (CycleGAN) was also trained to enable a comparative assessment of pCT quality relative to the Pix2Pix model. To assess differences between pCT and reference CT images, three key metrics (SSIM, PSNR, and MAE) were used. Additionally, a dosimetric evaluation was performed on selected cases to assess clinical relevance. The average SSIM, PSNR, and MAE for Pix2Pix on T1 images were 0.964 ± 0.03, 32.812 ± 5.21, and 79.681 ± 9.52 HU, respectively. Statistical analysis revealed that Pix2Pix significantly outperformed CycleGAN in generating high-fidelity pCT images (p < 0.05). There was no notable difference in the effectiveness of T1-weighted versus T2-weighted MR images for generating pCT (p > 0.05). Dosimetric evaluation confirmed comparable dose distributions between pCT and reference CT, supporting clinical feasibility. Both supervised and unsupervised methods demonstrated the capability to generate accurate pCT images from conventional T1- and T2-weighted MR sequences. While supervised methods like Pix2Pix achieve higher accuracy, unsupervised approaches such as CycleGAN offer greater flexibility by eliminating the need for paired training data, making them suitable for applications where paired data is unavailable. © 2025 Elsevier B.V., All rights reserved.
Other Related Docs