Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Segmentation of Choroidal Boundary in Enhanced Depth Imaging Octs Using a Multiresolution Texture Based Modeling in Graph Cuts Publisher Pubmed



Danesh H1 ; Kafieh R1 ; Rabbani H1 ; Hajizadeh F2
Authors

Source: Computational and Mathematical Methods in Medicine Published:2014


Abstract

The introduction of enhanced depth imaging optical coherence tomography (EDI-OCT) has provided the advantage of in vivo cross-sectional imaging of the choroid, similar to the retina, with standard commercially available spectral domain (SD) OCT machines. A texture-based algorithm is introduced in this paper for fully automatic segmentation of choroidal images obtained from an EDI system of Heidelberg 3D OCT Spectralis. Dynamic programming is utilized to determine the location of the retinal pigment epithelium (RPE). Bruch's membrane (BM) (the blood-retina barrier which separates the RPE cells of the retina from the choroid) can be segmented by searching for the pixels with the biggest gradient value below the RPE. Furthermore, a novel method is proposed to segment the choroid-sclera interface (CSI), which employs the wavelet based features to construct a Gaussian mixture model (GMM). The model is then used in a graph cut for segmentation of the choroidal boundary. The proposed algorithm is tested on 100 EDI OCTs and is compared with manual segmentation. The results showed an unsigned error of 2.48 ± 0.32 pixels for BM extraction and 9.79 ± 3.29 pixels for choroid detection. It implies significant improvement of the proposed method over other approaches like k -means and graph cut methods. © 2014 Hajar Danesh et al.
Other Related Docs
5. A Statistical Model for 3D Segmentation of Retinal Choroid in Optical Coherence Tomography Images, Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2014)
11. Forming Projection Images From Each Layer of Retina Using Diffusion May Based Oct Segmentation, 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012 (2012)
13. A New Texture-Based Segmentation Method for Optical Coherence Tomography Images, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2019)
14. Intra-Retinal Layer Segmentation of Optical Coherence Tomography Using Diffusion Map, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (2013)