Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Shear Bond Strength, Adhesive Remnant Index, and Anti-Biofilm Effects of a Photoexcited Modified Orthodontic Adhesive Containing Curcumin Doped Poly Lactic-Co-Glycolic Acid Nanoparticles: An Ex-Vivo Biofilm Model of S. Mutans on the Enamel Slab Bonded Brackets Publisher Pubmed



Ahmadi H1 ; Haddadiasl V1 ; Ghafari HA2 ; Ghorbanzadeh R2 ; Mazlum Y1 ; Bahador A3
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
  2. 2. Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
  3. 3. Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Source: Photodiagnosis and Photodynamic Therapy Published:2020


Abstract

Background: Potential complications during fixed orthodontic procedures are white spot lesions (WSLs) and tooth decay. This study evaluated the anti-biofilm activity of an orthodontic adhesive (OA) incorporating curcumin (Cur) doped Poly lactic-co-glycolic acid nanoparticles (Cur-PLGA-NPs), which can have the highest concentration of Cur-PLGA-NPs and shear bond strength (SBS) value simultaneously, against cariogenic bacteria i.e., Streptococcus mutans. Materials and methods: Following synthesis and confirmation of Cur-PLGA-NPs, SBS and adhesive remnant index (ARI) of the modified orthodontic adhesives (MOA) containing Cur-PLGA-NPs (3, 5, 7, and 10 % wt.) were measured using universal testing machine and stereomicroscope, respectively. After artificial aging (continuously rinsed up to 180 days), the residual anti-biofilm ability of MOA which can have the highest concentration of Cur-PLGA-NPs and SBS value simultaneously were determined by anti-biofilm assay following photoexcited enamel slab bonded brackets by MOA containing Cur-PLGA-NPs against S. mutans biofilms using crystal violet assay. Results: Adhesive with 7 % wt. Cur-PLGA-NPs revealed the highest concentration of Cur-PLGA-NPs and SBS value (16.19 ± 2.69 MPa, P < 0.05) simultaneously. No statistically significant difference in ARI scores was observed between the MOA and control (Transbond XT without the Cur-PLGA-NPs). On days 15, 30, 60, 90 and 120 there was a considerable decrease in optical density (OD) of preformed S. mutans biofilms on photoexcited enamel slab bonded brackets using MOA containing 7 % wt. Cur-PLGA-NPs, to 94.1 %, 79.6 %, 69.6 %, 69.4 %, and, 55.1 % respectively in comparison to the control group (all, P < 0.05). From days 150 onwards, microbial biofilm formation was progressively increased on enamel slab bonded brackets using MOA containing 7 % wt. Cur-PLGA-NPs compared to the control group (OA). Although chlorhexidine (2 %; as positive control) showed significant activity against pre-formed S. mutans biofilms on enamel slab bonded brackets using OA (99.1 % biofilm reduction; P = 0.001), its activity was slightly higher but not significant than photoexcited enamel slab bonded brackets using MOA containing 7 % wt. Cur-PLGA-NPs on the days 15 and 30 (both, P > 0.05). Conclusions: The 7 % wt. Cur-PLGA-NPs can serve as an orthodontic adhesive antimicrobial additive as exposure to blue laser provides an acceptable antimicrobial effect against cariogenic bacteria for a considerable time. © 2020 Elsevier B.V.
Experts (# of related papers)
Other Related Docs
20. Remineralization and Antibacterial Capabilities of Resin-Based Dental Nanocomposites, Applications of Nanocomposite Materials in Dentistry (2018)
21. Remineralization and Antibacterial Capabilities of Resin-Based Dental Nanocomposites, Applications of Nanocomposite Materials in Dentistry (2019)
25. Antibacterial Properties of an Acrylic Resin Containing Curcumin Nanoparticles: An in Vitro Study, Journal of Dental Research# Dental Clinics# Dental Prospects (2022)