Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Development of G-C3n4/Zno Nanocomposite As a Novel, Highly Effective and Durable Photocatalytic Antibacterial Coating for Cotton Fabric Publisher



Hosseinihosseinabad SM1, 2 ; Minaeian S2 ; Tavakoli A3 ; Sabaei M2 ; Yousefi Zoshk M4 ; Laripour R5 ; Ramezani S6 ; Hoseini M6, 7 ; Chamanara M1, 7
Authors
Show Affiliations
Authors Affiliations
  1. 1. Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
  2. 2. Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
  3. 3. Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
  4. 4. Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran
  5. 5. Aja University of Medical Sciences, Social and Preventive Medicine Department, School of Medicine, Tehran, Iran
  6. 6. Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
  7. 7. Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran

Source: Ceramics International Published:2023


Abstract

Photocatalytic antibacterial coats are considered among the best solutions to bacterial contamination of fabrics, with the drawback of reduced efficacy after continued use and washing. In the present study, the g-C3N4/ZnO (CNZ) nanocomposite has been introduced as a novel cotton fabric coating, with high durability, and CNZ nanopowders were synthesized using a two-step thermal synthesis process and directly coated onto cotton fabric using the sonication technique. The synthesized nanoparticles (NPs) were examined using X-ray diffraction (XRD), UV–visible spectroscopy, photoluminescence (PL), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) analyzes. Besides, the SEM analysis confirmed the successful deposition of NPs on cotton fabric. The photodegradation of methylene blue (MB) stain was assessed as a functional test for the photocatalytic effectiveness of the coated fabric, then its antibacterial properties were evaluated under visible light, by direct contact with bacterial suspensions and culturing. The results revealed that the CNZ-coated cotton fabric containing 30% ZnO (CNZ-30) has significant photocatalytic antibacterial activity against both Escherichia coli (gram-negative), and Staphylococcus aureus (gram-positive) bacteria. The bacterial reduction rate of CNZ-30 coated fabric for both E. coli and S. aureus was above 98%, even after 18 washing cycles. This excellent performance is attributed to the effective coupling of ZnO with g-C3N4, improved light absorption, and reduced e−/h+ pair recombination rates. This study novel coating method can offer an environmentally friendly, cost-effective, and simple process to manufacture hybrid CNZ antibacterial cotton in the textile industry. © 2022 Elsevier Ltd and Techna Group S.r.l.