Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Pathological Aging of Patients With Amyotrophic Lateral Sclerosis: A Preliminary Longitudinal Study Publisher Pubmed



Mohammadi S1 ; Ghaderi S1, 2 ; Fatehi F1, 2 ; Kalra S3, 4 ; Batouli SAH2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
  4. 4. Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada

Source: Brain and Behavior Published:2025


Abstract

Objective: This longitudinal study investigated pathological brain aging in amyotrophic lateral sclerosis (ALS) by evaluating disparities between chronological age and deep learning-derived brain structure age (BSA) and exploring associations with cognitive and functional decline. Methods: Ten limb-onset ALS patients (seven males) and 10 demographically matched healthy controls (HCs) underwent structural magnetic resonance imaging (sMRI) and cognitive assessments at baseline and follow-up. The BSA was estimated using the validated volBrain platform. Cognitive domains (language, verbal fluency, executive function, memory, and visuospatial skills) and global cognition (Persian adaptive Edinburgh Cognitive and Behavioral ALS Screen [ECAS] total score) were assessed along with functional status (ALSFRS-R). Results: ALS patients exhibited significant BSA-chronological age disparities at baseline (Δ = +7.31 years, p = 0.009) and follow-up (Δ = +8.39 years, p = 0.003), with accelerated BSA progression over time (p = 0.004). The HCs showed no such disparities (p = 0.931). Longitudinal BSA increases were correlated with executive function decline (r = −0.651, p = 0.042). Higher education predicted preserved language (r = 0.831, p = 0.003) and verbal fluency (r = 0.738, p = 0.015). ALSFRS-R decline paralleled visuospatial (r = 0.642, p = 0.045) and global cognitive deterioration (r = 0.667, p = 0.035). Conclusions: ALS is characterized by accelerated structural brain aging that progresses independently of chronological age and is correlated with executive dysfunction. Education may mitigate cognitive decline, while motor functional deterioration aligns with visuospatial and global cognitive impairments. BSA has emerged as a potential biomarker for tracking pathological aging trajectories in ALS, warranting validation using larger cohorts. © 2025 The Author(s). Brain and Behavior published by Wiley Periodicals LLC.