Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Anti-Multispecies Microbial Biofilms and Anti-Inflammatory Effects of Antimicrobial Photo-Sonodynamic Therapy Based on Acrylic Resin Containing Nano-Resveratrol Publisher Pubmed



Pourhajibagher M1 ; Bahrami R2 ; Bazarjani F3 ; Bahador A4, 5
Authors
Show Affiliations
Authors Affiliations
  1. 1. Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Tehran University of Medical Sciences, Tehran, Iran
  4. 4. Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  5. 5. Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran

Source: Photodiagnosis and Photodynamic Therapy Published:2023


Abstract

Background: Polymethylmethacrylate (PMMA)-based removable orthodontic appliances are susceptible to microbial colonization due to the surface porosity, and accumulating the biofilms causes denture stomatitis. the present study evaluated the anti-biofilm and antiinflammatory effects of antimicrobial photo-sonodynamic therapy (aPSDT) against multispecies microbial biofilms (Candida albicans, Staphylococcus aureus, Streptococcus sobrinus, and Actinomyces naeslundii) formed on acrylic resin modified with nanoresveratrol (NR). Materials and methods: Following the determination of the minimum biofilm inhibitory concentration (MBIC) of NR, in vitro anti-biofilm activity of NR was evaluated. The antibiofilm efficacy against multispecies microbial biofilm including C. albicans, S. aureus, S. sobrinus, and A. naeslundii, were assessed by biofilm inhibition test and the results were measured. To reveal the anti-inflammatory effects of aPSDT on human gingival fibroblast (HGF) cells, the gene expression levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated via quantitative real-time polymerase chain reaction (qRT-PCR). Results: According to the results, the MBIC dose of NR against multispecies microbial biofilm was considered 512 µg/mL. The highest biofilm reduction activity was observed in MBIC treated with aPSDT and 2 × MBIC exposed to light emitting diode (LED) and ultrasound waves (UW). The expression level of TNF-α and IL-6 genes were significantly increased when HGF cells were exposed to multispecies microbial biofilms (P<0.05), while after treatment with aPSDT, the expression levels of genes were significantly downregulated in all groups (P<0.05). Conclusion: Overall, NR-mediated aPSDT reduced the growth of the multispecies microbial biofilm and downregulated the expression of TNF-α and IL-6 genes. Therefore, modified PMMA with NR can be serving as a promising new orthodontic acrylic resin against multispecies microbial biofilms and the effect of this new material is amplified when exposed to LED and UW. © 2023 Elsevier B.V.
Experts (# of related papers)
Other Related Docs