Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Predicting Renal Failure Progression in Chronic Kidney Disease Using Integrated Intelligent Fuzzy Expert System Publisher Pubmed



Norouzi J1 ; Yadollahpour A2 ; Mirbagheri SA3 ; Mazdeh MM4 ; Hosseini SA5
Authors

Source: Computational and Mathematical Methods in Medicine Published:2016


Abstract

Background. Chronic kidney disease (CKD) is a covert disease. Accurate prediction of CKD progression over time is necessary for reducing its costs and mortality rates. The present study proposes an adaptive neurofuzzy inference system (ANFIS) for predicting the renal failure timeframe of CKD based on real clinical data. Methods. This study used 10-year clinical records of newly diagnosed CKD patients. The threshold value of 15 cc/kg/min/1.73 m2 of glomerular filtration rate (GFR) was used as the marker of renal failure. A Takagi-Sugeno type ANFIS model was used to predict GFR values. Variables of age, sex, weight, underlying diseases, diastolic blood pressure, creatinine, calcium, phosphorus, uric acid, and GFR were initially selected for the predicting model. Results. Weight, diastolic blood pressure, diabetes mellitus as underlying disease, and current GFR(t) showed significant correlation with GFRs and were selected as the inputs of model. The comparisons of the predicted values with the real data showed that the ANFIS model could accurately estimate GFR variations in all sequential periods (Normalized Mean Absolute Error lower than 5%). Conclusions. Despite the high uncertainties of human body and dynamic nature of CKD progression, our model can accurately predict the GFR variations at long future periods. © 2016 Jamshid Norouzi et al.
Other Related Docs
5. Metabolic Syndrome and Its Components Associated With Chronic Kidney Disease, Journal of Research in Medical Sciences (2015)
7. Nephropathy Prediction in Diabetic Patient Using Fuzzy Regression Model, Iranian Journal of Diabetes and Metabolism (2019)