Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
A Fast Monte Carlo Code for Proton Transport in Radiation Therapy Based on Mcnpx Publisher



Jabbari K1 ; Seuntjens J2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Physics and Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  2. 2. Medical Physics Unit, McGill University Health Center, Montreal, QC, Canada

Source: Journal of Medical Physics Published:2014


Abstract

An important requirement for proton therapy is a software for dose calculation. Monte Carlo is the most accurate method for dose calculation, but it is very slow. In this work, a method is developed to improve the speed of dose calculation. The method is based on pre-generated tracks for particle transport. The MCNPX code has been used for generation of tracks. A set of data including the track of the particle was produced in each particular material (water, air, lung tissue, bone, and soft tissue). This code can transport protons in wide range of energies (up to 200 MeV for proton). The validity of the fast Monte Carlo (MC) code is evaluated with data MCNPX as a reference code. While analytical pencil beam algorithm transport shows great errors (up to 10%) near small high density heterogeneities, there was less than 2% deviation of MCNPX results in our dose calculation and isodose distribution. In terms of speed, the code runs 200 times faster than MCNPX. In the Fast MC code which is developed in this work, it takes the system less than 2 minutes to calculate dose for 106particles in an Intel Core 2 Duo 2.66 GHZ desktop computer. © 2014 Journal of Medical Physics.
Other Related Docs
13. Sensitivity Analysis of a 6 Mev Photon Beam Monte Carlo Model, Journal of Medical Signals and Sensors (2023)