Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Patient Health Questionnaire-9 Scores Do Not Accurately Estimate Depression Prevalence: Individual Participant Data Meta-Analysis Publisher Pubmed



Levis B1, 2 ; Benedetti A2, 3, 4 ; Ioannidis JPA5, 6, 7, 8 ; Sun Y1 ; Negeri Z1, 2 ; He C1 ; Wu Y1, 2, 9 ; Krishnan A1 ; Bhandari PM1, 2 ; Neupane D1, 2 ; Imran M1 ; Rice DB1, 10 ; Riehm KE1, 11 ; Saadat N1 Show All Authors
Authors
  1. Levis B1, 2
  2. Benedetti A2, 3, 4
  3. Ioannidis JPA5, 6, 7, 8
  4. Sun Y1
  5. Negeri Z1, 2
  6. He C1
  7. Wu Y1, 2, 9
  8. Krishnan A1
  9. Bhandari PM1, 2
  10. Neupane D1, 2
  11. Imran M1
  12. Rice DB1, 10
  13. Riehm KE1, 11
  14. Saadat N1
  15. Azar M1, 2
  16. Boruff J12
  17. Cuijpers P13
  18. Gilbody S14
  19. Kloda LA15
  20. Mcmillan D11
  21. Patten SB16, 17
  22. Shrier I1, 2, 18
  23. Ziegelstein RC19
  24. Alamri SH20
  25. Amtmann D21
  26. Ayalon L22
  27. Baradaran HR23, 24
  28. Beraldi A25
  29. Bernstein CN26, 27
  30. Bhana A28, 29
  31. Bombardier CH21
  32. Carter G30
  33. Chagas MH31
  34. Chibanda D32
  35. Clover K30
  36. Conwell Y33
  37. Diezquevedo C34, 35
  38. Fann JR36
  39. Fischer FH9, 37
  40. Gholizadeh L38
  41. Gibson LJ39
  42. Green EP40
  43. Greeno CG41
  44. Hall BJ42, 43
  45. Haroz EE44
  46. Ismail K45
  47. Jette N16, 17, 46
  48. Khamseh ME23
  49. Kwan Y47
  50. Lara MA48
  51. Liu SI49, 50, 51, 52
  52. Loureiro SR31
  53. Lowe B53
  54. Marrie RA54
  55. Marsh L55
  56. Mcguire A56
  57. Muramatsu K57
  58. Navarrete L58
  59. Osorio FL31, 59
  60. Petersen I60
  61. Picardi A61
  62. Pugh SL62, 63
  63. Quinn TJ64
  64. Rooney AG65
  65. Shinn EH66
  66. Sidebottom A67
  67. Spangenberg L68
  68. Tan PLL47
  69. Taylorrowan M69
  70. Turner A70, 71
  71. Van Weert HC72
  72. Vohringer PA73, 74, 75
  73. Wagner LI76, 77
  74. White J78
  75. Winkley K79
  76. Thombs BD1, 2, 4, 9, 10, 80, 81

Source: Journal of Clinical Epidemiology Published:2020


Abstract

Objectives: Depression symptom questionnaires are not for diagnostic classification. Patient Health Questionnaire-9 (PHQ-9) scores ≥10 are nonetheless often used to estimate depression prevalence. We compared PHQ-9 ≥10 prevalence to Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (SCID) major depression prevalence and assessed whether an alternative PHQ-9 cutoff could more accurately estimate prevalence. Study Design and Setting: Individual participant data meta-analysis of datasets comparing PHQ-9 scores to SCID major depression status. Results: A total of 9,242 participants (1,389 SCID major depression cases) from 44 primary studies were included. Pooled PHQ-9 ≥10 prevalence was 24.6% (95% confidence interval [CI]: 20.8%, 28.9%); pooled SCID major depression prevalence was 12.1% (95% CI: 9.6%, 15.2%); and pooled difference was 11.9% (95% CI: 9.3%, 14.6%). The mean study-level PHQ-9 ≥10 to SCID-based prevalence ratio was 2.5 times. PHQ-9 ≥14 and the PHQ-9 diagnostic algorithm provided prevalence closest to SCID major depression prevalence, but study-level prevalence differed from SCID-based prevalence by an average absolute difference of 4.8% for PHQ-9 ≥14 (95% prediction interval: −13.6%, 14.5%) and 5.6% for the PHQ-9 diagnostic algorithm (95% prediction interval: −16.4%, 15.0%). Conclusion: PHQ-9 ≥10 substantially overestimates depression prevalence. There is too much heterogeneity to correct statistically in individual studies. © 2020 Elsevier Inc.
Other Related Docs