Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Protective Effects of Nanocurcumin Against Stress-Induced Deterioration in the Intestine Publisher Pubmed



Alinaghipour A1, 2 ; Salami M3 ; Riahi E1, 2 ; Ashabi G1, 2 ; Soheili M3 ; Nabavizadeh F1, 2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran

Source: Stress Published:2022


Abstract

The therapeutic activities of curcumin have long been investigated in some chronic and inflammatory diseases. This study was designed to investigate the protective effects of nanocurcumin on intestinal barrier function, apoptosis, and oxidative stress in rats exposed to traffic noise. Forty rats were divided into four groups: two traffic noise-exposed groups of animals that received either vehicle (NOISE) or nanocurcumin (NCUR + NOISE) and two control groups that either remained intact (CON) or received nanocurcumin (NCUR). Nanocurcumin injection (15 mg/Kg/ip) and traffic noise exposure were administered daily for two weeks. The relative protein expression of intestinal tight junctions, occludin, and ZO-1 and Bax/Bcl-2 ratio was measured to evaluate barrier integrity and apoptosis in intestinal samples, respectively. Plasma D-lactate concentration was examined as a criterion of intestinal permeability. Corticosterone, superoxide dismutase (SOD) activity, glutathione (GSH), total antioxidant capacity (TAC), and nitrite were measured in serum. The noise exposure increased Bax/Bcl-2 ratio, corticosterone, and oxidative stress in the NOISE animals. Nanocurcumin treatment improved the Bax/Bcl-2 ratio and reduced corticosterone and oxidative stress in the NCUR + NOISE animals. The expression of tight junction proteins was decreased while the concentration of D-lactate was increased in the NOISE animals. Nanocurcumin did not efficiently impact the expression of tight junction proteins and the D-lactate level in the NCUR + NOISE group. Nanocurcumin administration displayed antioxidant and anti-apoptotic roles in the noise-exposed rats, however, it did not affect the intestinal barrier integrity. We concluded that reduced apoptosis in the intestine might be related to the antioxidant activity of nanocurcumin and its modulatory effects on the HPA axis in the nanocurcumin-treated animals. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Experts (# of related papers)