Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Semi-Automated Glioblastoma Tumor Detection Based on Different Classifiers Using Magnetic Resonance Spectroscopy Publisher



Faramarzi A1 ; Loghmani N2 ; Moqadam R3, 4 ; Allahverdy A5 ; Mansoory MS1
Authors

Source: Frontiers in Biomedical Technologies Published:2021


Abstract

Purpose: Glioblastoma Multiform (GBM) is one of the most common and deadly malignant brain tumors. Surgery is the primary treatment, and careful surgery can minimize recurrence odds. Magnetic Resonance Imaging (MRI) imaging with Magnetic Resonance Spectroscopy (MRS) is used to diagnose various types of tumors in the Central Nervous System (CNS). In this study, several classification methods were used to separate tumor and healthy tissue. Materials and Methods: This study examined the MRI and MRS results of seven people enrolled in this study in 2018. The data was obtained with a prescription from a neurologist and neurosurgeon. Choline (Cho) and N-Acetylaspartate (NAA) metabolite signals were selected as the reference signal after preprocessing and removing the water signal. With the support of 3 radiologists, each tumor and healthy vesicles were identified for every patient. Then, tumor and healthy voxels were separated based on Multilayer Perceptron (MLP), linear Support Vector Machine (SVM), Gaussian SVM, and Fuzzy system using the obtained values and four different methods. Results: Data extracted from Cho and NAA metabolites were fed into MLP, linear SVM, Gaussian and Fuzzy SVM as input, and the amounts of accuracy, sensitivity, and specificity were determined for each method. The maximum accuracy for training mode and test mode was equal to 89.7% and 87%, respectively, specific to classification using Gaussian SVM. The results also showed that the classification accuracy can be significantly increased by increasing the number of fuzzy membership functions from 2 to 6. Conclusion: The results of this study suggested that a more complex classification system, such as SVM with a Gaussian kernel and fuzzy system can be more efficient and reliable when it comes to separating tumor tissue from healthy tissues from MRS data. Copyright © 2021 Tehran University of Medical Sciences.
Other Related Docs
18. Quantification of Diagnostic Biomarkers to Detect Multiple Sclerosis Lesions Employing 1H-Mrsi at 3T, Australasian Physical and Engineering Sciences in Medicine (2015)
19. Brain Tumor Segmentation Using Multimodal Mri and Convolutional Neural Network, 2022 30th International Conference on Electrical Engineering# ICEE 2022 (2022)