Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
[18F]Fdg-Pet/Ct Radiomics and Artificial Intelligence in Lung Cancer: Technical Aspects and Potential Clinical Applications Publisher Pubmed



Manafifarid R1 ; Askari E2 ; Shiri I3 ; Pirich C4 ; Asadi M1 ; Khateri M1 ; Zaidi H3, 5, 6, 7 ; Beheshti M4
Authors
Show Affiliations
Authors Affiliations
  1. 1. Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
  3. 3. Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
  4. 4. Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
  5. 5. Geneva University Neurocenter, Geneva University, Geneva, Switzerland
  6. 6. Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
  7. 7. Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark

Source: Seminars in Nuclear Medicine Published:2022


Abstract

Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT‐based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes. © 2022 The Authors
3. Pet Image Radiomics Feature Variability in Lung Cancer: Impact of Image Segmentation, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
6. Combat Harmonization of Image Reconstruction Parameters to Improve the Repeatability of Radiomics Features, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
7. Lymphovascular Invasion Prediction in Lung Cancer Using Multi-Segmentation Pet Radiomics and Multi-Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
8. Lung Cancer Recurrence Prediction Using Radiomics Features of Pet Tumor Sub-Volumes and Multi-Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
Experts (# of related papers)
Other Related Docs
9. Cardiac Pattern Recognition From Spect Images Using Machine Learning Algorithms, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
15. Robust Versus Non-Robust Radiomic Features: Machine Learning Based Models for Nsclc Lymphovascular Invasion, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
25. Deep Vision Transformers for Prognostic Modeling in Covid-19 Patients Using Large Multi-Institutional Chest Ct Dataset, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
30. Mri Radiomic Features Harmonization: A Multi-Center Phantom Study, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
31. Machine Learning-Based Overall Survival Prediction in Gbm Patients Using Mri Radiomics, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
44. Deep Adaptive Transfer Learning for Site-Specific Pet Attenuation and Scatter Correction From Multi-National/Institutional Datasets, 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium# Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022)
48. Non-Invasive Pnet Grading Using Ct Radiomics and Machine Learning, Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (2025)