Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Use of Multidimensional Item Response Theory Methods for Dementia Prevalence Prediction: An Example Using the Health and Retirement Survey and the Aging, Demographics, and Memory Study Publisher



Nichols E1 ; Abdallah F2 ; Abdoli A3 ; Abualhasan A2 ; Abugharbieh E4 ; Afshin A1, 5 ; Akinyemi RO6, 7 ; Alanezi FM8 ; Alipour V9, 10 ; Almasihashiani A11 ; Arabloo J9 ; Ashrafganjouei A12 ; Ayano G13 ; Ayusomateos JL14, 15 Show All Authors
Authors
  1. Nichols E1
  2. Abdallah F2
  3. Abdoli A3
  4. Abualhasan A2
  5. Abugharbieh E4
  6. Afshin A1, 5
  7. Akinyemi RO6, 7
  8. Alanezi FM8
  9. Alipour V9, 10
  10. Almasihashiani A11
  11. Arabloo J9
  12. Ashrafganjouei A12
  13. Ayano G13
  14. Ayusomateos JL14, 15
  15. Baig AA16
  16. Banach M17, 18
  17. Barboza MA19, 20
  18. Barkercollo SL21
  19. Baune BT22, 23
  20. Bhagavathula AS24, 25
  21. Bhattacharyya K26, 27
  22. Bijani A28
  23. Biswas A29
  24. Boloor A30
  25. Brayne C31
  26. Brenner H32
  27. Burkart K1, 5
  28. Nagaraja SB33
  29. Carvalho F34
  30. Castrodearaujo LFS35
  31. Catalalopez F36, 37
  32. Cerin E38, 39
  33. Cherbuin N40
  34. Chu DT41
  35. Dai X1
  36. De Sajunior AR42
  37. Djalalinia S43
  38. Douiri A44
  39. Edvardsson D45, 46
  40. Eljaafary SI2
  41. Eskandarieh S47
  42. Faro A48
  43. Farzadfar F49
  44. Feigin VL1, 50, 51, 141
  45. Fereshtehnejad SM53, 54
  46. Fernandes E55
  47. Ferrara P56
  48. Filip I57, 58
  49. Fischer F59
  50. Gaidhane S60
  51. Galluzzo L61
  52. Gebremeskel GG62, 63
  53. Ghashghaee A9, 64
  54. Gialluisi A65
  55. Gnedovskaya EV66
  56. Golechha M67
  57. Gupta R68, 69
  58. Hachinski V70, 71
  59. Haider MR72
  60. Haile TG62
  61. Hamiduzzaman M73
  62. Hankey GJ74, 75
  63. Hay SI1, 5
  64. Heidari G76
  65. Heidarisoureshjani R77
  66. Ho HC78
  67. Househ M79
  68. Hwang BF80
  69. Iacoviello L65, 81
  70. Ilesanmi OS82, 83
  71. Ilic IM84
  72. Ilic MD85
  73. Irvani SSN86
  74. Iwagami M87, 88
  75. Iyamu IO89, 90
  76. Jha RP91, 92
  77. Kalani R93
  78. Karch A94
  79. Kasa AS95
  80. Khader YS96
  81. Khan EA97
  82. Khatib MN98
  83. Kim YJ99
  84. Kisa S100
  85. Kisa A101, 102
  86. Kivimaki M103, 104
  87. Koyanagi A105, 106
  88. Kumar M107, 108
  89. Landires I109, 110
  90. Lasrado S111
  91. Li B112
  92. Lim SS1, 5
  93. Liu X113
  94. Kunjathur SM114
  95. Majeed A115
  96. Malik P116, 117
  97. Mehndiratta MM118, 119
  98. Menezes RG120
  99. Mohammad Y121
  100. Mohammed S122, 123
  101. Mokdad AH1, 5
  102. Moni MA124
  103. Nagel G125
  104. Naveed M126
  105. Nayak VC127
  106. Nguyen CT128
  107. Nguyen HLT128
  108. Nunezsamudio V129, 130
  109. Olagunju AT131, 132
  110. Ostroff SM1, 133
  111. Otstavnov N134
  112. Owolabi MO135, 136
  113. Kan FP137
  114. Patel UK138
  115. Phillips MR139, 140
  116. Piradov MA51, 141
  117. Pond CD142
  118. Pottoo FH143
  119. Prada SI144, 145
  120. Radfar A146
  121. Rahim F147, 148
  122. Rana J149, 150
  123. Rashedi V151
  124. Rawaf S115, 152
  125. Rawaf DL153, 154
  126. Reinig N1
  127. Renzaho AMN155, 156
  128. Rezaei N157, 158
  129. Rezapour A9
  130. Romoli M159, 160
  131. Roshandel G161
  132. Sachdev PS162, 163
  133. Sahebkar A164, 165
  134. Sahraian MA47
  135. Samaei M166
  136. Saylan M167
  137. Sha F168
  138. Shaikh MA169
  139. Shibuya K170
  140. Shigematsu M171
  141. Shin JI172
  142. Shiri R173
  143. Silva DAS174
  144. Singh JA175, 176
  145. Singhal D177, 178
  146. Skryabin VY179
  147. Skryabina AA180
  148. Soheili A181
  149. Sotoudeh H182
  150. Spurlock EE1
  151. Szoeke CEI183, 184
  152. Tabaresseisdedos R185, 186
  153. Taddele BW187
  154. Tovanipalone MR188, 189
  155. Tsegaye GW190
  156. Vacante M191
  157. Venketasubramanian N192, 193
  158. Vidale S194, 195
  159. Vlassov V196
  160. Vu GT197
  161. Wang YP198
  162. Weiss J199
  163. Weldemariam AH200
  164. Westerman R201
  165. Wimo A202
  166. Winkler AS203, 204
  167. Wu C205, 206
  168. Yadollahpour A207
  169. Yesiltepe M208, 209
  170. Yonemoto N210, 211
  171. Yu C212
  172. Zastrozhin MS213, 214
  173. Zastrozhina A215
  174. Zhang ZJ216
  175. Murray CJL1, 5
  176. Vos T1, 5

Source: BMC Medical Informatics and Decision Making Published:2021


Abstract

Background: Data sparsity is a major limitation to estimating national and global dementia burden. Surveys with full diagnostic evaluations of dementia prevalence are prohibitively resource-intensive in many settings. However, validation samples from nationally representative surveys allow for the development of algorithms for the prediction of dementia prevalence nationally. Methods: Using cognitive testing data and data on functional limitations from Wave A (2001–2003) of the ADAMS study (n = 744) and the 2000 wave of the HRS study (n = 6358) we estimated a two-dimensional item response theory model to calculate cognition and function scores for all individuals over 70. Based on diagnostic information from the formal clinical adjudication in ADAMS, we fit a logistic regression model for the classification of dementia status using cognition and function scores and applied this algorithm to the full HRS sample to calculate dementia prevalence by age and sex. Results: Our algorithm had a cross-validated predictive accuracy of 88% (86–90), and an area under the curve of 0.97 (0.97–0.98) in ADAMS. Prevalence was higher in females than males and increased over age, with a prevalence of 4% (3–4) in individuals 70–79, 11% (9–12) in individuals 80–89 years old, and 28% (22–35) in those 90 and older. Conclusions: Our model had similar or better accuracy as compared to previously reviewed algorithms for the prediction of dementia prevalence in HRS, while utilizing more flexible methods. These methods could be more easily generalized and utilized to estimate dementia prevalence in other national surveys. © 2021, The Author(s).
Other Related Docs