Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Simulation of Tensile Strength for Halloysite Nanotubes/Polymer Composites Publisher



Zare Y1 ; Rhee KY2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
  2. 2. Department of Mechanical Engineering (BK21 four), College of Engineering, Kyung Hee University, Yongin, South Korea

Source: Applied Clay Science Published:2021


Abstract

There are limited equations for determining the mechanical performance of halloysite nanotubes (Hal)/polymer samples, and these equations ignore the reinforcing efficacy of the interphase zone. In this article, the Kolarik system is used to determine the tensile strength of Hal-reinforced nanocomposites by Hal size, Hal concentration, and interphase properties. In addition, Pukanszky model is modified for this material type to account for effective Hal concentration based on the advanced Kolarik model. Numerous sets of experimental data for several samples and parametric inspections endorse the developed models. Both interphase depth and power directly govern the nanocomposite's strength and the interphase factor “A” in the advanced Kolarik model. The lowest ranges of interphase properties lead to the lowest level of “A,” and at this level, there is no strengthening of the nanocomposites. The Hal radius (R) of 10 nm and Hal length (l) of 3 μm lead to the highest “A” of 50 and the maximum relative strength of 4.5 (350% improvement in nanocomposite's strength), whereas Hal with R > 50 nm and l < 1.5 μm cannot reinforce the sample. Moreover, the Hal content, interphase parameter “B,” and interphase thickness have a direct relationship with nanocomposite's strength according to the developed Pukanszky model, whereas the Hal radius has an inverse relationship. © 2021 Elsevier B.V.
Other Related Docs
12. Beyond Conventional Models: Innovative Analysis of Tensile Strength for Polymer Hydroxyapatite Nanocomposites, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2024)