Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
The Strengthening Efficacy of Filler/Interphase Network in Polymer Halloysite Nanotubes System After Mechanical Percolation Publisher



Zare Y1 ; Rhee KY2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
  2. 2. Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin, South Korea

Source: Journal of Materials Research and Technology Published:2021


Abstract

A defective interphase section in polymer halloysite nanotubes (HNT) system is considered and the influences of required interfacial shear strength for effective stress conveying via interphase zone (τc) and interfacial shear strength (τc) on the effective interphase depth, effective filler amount and percolation onset are stated. Additionally, a novel model is progressed for the strength of nanocomposites after percolation onset assuming these terms. The calculations of the established model at numerous series of all factors are analyzed and several tentative facts for various examples are compared to model's estimations. The nanocomposite's strength reaches 75 MPa at τc = 10 MPa and HNT volume fraction of 0.03, but τc = 50 MPa cannot toughen the system at various HNT contents. τ = 30 MPa and HNT radius (R) = 60 nm cannot strengthen the nanocomposites, while τ = 100 MPa and R = 20 nm maximize the strength of system to 138 MPa. HNT length of 900 nm cannot reinforce the samples at various ranges of percolation onset, whereas the strength of nanocomposites grows to 200 MPa at HNT length of 3.1 μm and percolation onset of 0.002. These results are valuable to optimize the main factors yielding the tough nanocomposites. © 2021 The Author(s)
Experts (# of related papers)
Other Related Docs
30. Beyond Conventional Models: Innovative Analysis of Tensile Strength for Polymer Hydroxyapatite Nanocomposites, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2024)
46. From Nano to Macro in Graphene-Polymer Nanocomposites: A New Methodology for Conductivity Prediction, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2024)