Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
The Impact of Image Reconstruction Settings on 18F-Fdg Pet Radiomic Features: Multi-Scanner Phantom and Patient Studies Publisher Pubmed



Shiri I1 ; Rahmim A2, 3 ; Ghaffarian P4, 5 ; Geramifar P6 ; Abdollahi H1 ; Bitarafanrajabi A1, 7
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Shahid Chamran Expressways, Tehran, Iran
  2. 2. Department of Radiology, Johns Hopkins University, Baltimore, 21287, MD, United States
  3. 3. Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, 21218, MD, United States
  4. 4. Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
  5. 5. PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  6. 6. Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
  7. 7. Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Avenue, Niyayesh Blvd, Tehran, Iran

Source: European Radiology Published:2017


Abstract

Objectives: The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings. Methods: Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV). Results: Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively. Conclusions: Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies. Key Points: • PET/CT image radiomics is a quantitative approach assessing different aspects of tumour uptake. • Radiomic features robustness is an important issue over different image reconstruction settings. • Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent. • Robust radiomic features can be considered as good candidates for tumour quantification. © 2017, European Society of Radiology.
Other Related Docs
20. Biomarkers for Predicting the Outcome of Various Cancer Immunotherapies, Critical Reviews in Oncology/Hematology (2021)