Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Fret-Based Aptamer Biosensor for Selective and Sensitive Detection of Aflatoxin B1 in Peanut and Rice Publisher Pubmed



Sabet FS1 ; Hosseini M1, 2 ; Khabbaz H1 ; Dadmehr M3 ; Ganjali MR4, 5
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
  2. 2. Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Department of Biotechnology, Payame Noor University, Tehran, Iran
  4. 4. Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
  5. 5. Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Source: Food Chemistry Published:2017


Abstract

Aflatoxins are potential food pollutants produced by fungi. Among them, Aflatoxin B1 (AFB1) is the most toxic. Therefore, a great deal of concern is associated with AFB1 toxicity. In this work, utilizing a FRET-based method, we have developed a nanobiosensor for detection of AFB1 in agricultural foods. Aptamer-conjugated Quantum dots (QDs) are adsorbed to Au nanoparticles (AuNPs) due to interaction of aptamers with AuNPs leading to quenching effect on QDs fluorescence. Upon the addition of AFB1, the specific aptamers are attracted to AFB1, getting distance from AuNPs which result in fluorescence recovery. Under optimized conditions the detection limit of proposed nanobiosensor was 3.4 nM with linear range of 10–400 nM. Selectivity test demonstrates that the nanobiosensor could be a promising tool for specific evaluation of food stuff. This method was successfully applied for the analysis of AFB1 in rice and peanut samples. © 2016 Elsevier Ltd