Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Assessment of Improvement in Oxidative Stress Indices With Resocialization in Memory Retrieval in Y-Maze in Male Rats Publisher



Famitafreshi H1 ; Karimian M1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran

Source: Journal of Experimental Neuroscience Published:2018


Abstract

Introduction: Memory deficit is an important issue in some psychiatric diseases either as a primary symptom or as a comorbid symptom. Factors that determine the decline or improvement of memory are an important subject to reduce the severity of these diseases. Methods and materials: In this study, 32 male Sprague-Dawley rats were randomly divided into 4 experimental groups: social (control), isolation, resocialization for 3 days, and resocialization for 7 days. Isolation occurred for 14 days. Resocialization groups were resocialized for 3 or 7 days after isolation. In the social group, there was no intervention with normal socializing among the rats. In the isolation group, rats were isolated with no resocialization. In all 4 groups, after performing the Y-maze, the rats’ brains were removed to assess oxidative stress status in the hippocampus and prefrontal cortex. Results: Y-maze performance improved after 3 and 7 days of resocialization. However, oxidative stress status for malondialdehyde, glutathione and nitrite/nitrate returned to normal levels except in 2 experiments after 7 days of resocialization. In addition, in 2 experiments, just glutathione in the prefrontal cortex and nitrite/nitrate in the hippocampus after 3 days of resocialization improved. Conclusions: A return to normal levels in all types of antioxidant markers in the resocialization groups is not the only factor for improving memory deficits resulting from isolation. Resocialization may also be activating other regulatory mechanisms besides an antioxidant defense. © The Author(s) 2018.