Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Synthesis of Silver Nanoparticles by Raoultella Planticola and Their Potential Antibacterial Activity Against Multidrug-Resistant Isolates Publisher



Qurbani K1 ; Hussein S1, 2 ; Hamzah H3 ; Sulaiman S1 ; Pirot R1 ; Motevaseli E2, 4 ; Azizi Z2, 5
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Laboratory Science, University of Raparin, Kurdistan Region, Rania, Iraq
  2. 2. Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Department of Biology, University of Sulaimani, Kurdistan Region, Sulaymaniyah, Iraq
  4. 4. Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
  5. 5. Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Source: Iranian Journal of Biotechnology Published:2022


Abstract

Background: Nanoparticles can be chemically, physically, or biologically synthesized. Biosynthesis of silver nanoparticles (AgNPs) utilizing microbes is a promising process due to the low toxicity and high stability of AgNPs. Here, AgNPs were fabricated by Gram-negative Raoultella planticola. Objectives: This study aimed to assess the ability of Raoultella planticola to produce nanoparticles (NPs) and evaluate their antibacterial potential against multidrug-resistant pathogens (MDR). Additionally, the study aimed to compare the antibacterial activity of biosynthesized nanoparticles to well-known conventional antibiotics Azithromycin and Tetracycline. Materials and Methods: AgNPs were characterized using visual observation, UV–visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). The TEM and SEM were used to determine the size and shape of the nanoparticles. The XRD data were recorded in the 2θ ranging from 20-80° to analyze the crystalline structure of nanoparticles. The antibacterial activity was detected using a 96-well microtiter plate. Results: The UV–vis absorption recorded from the 300 – 900 nm spectrum was well defined at 420 nm, and the XRD pattern was compatible with Braggs’s reflection of the silver nanocrystals. FTIR showed absorbance bands corresponding to different functional groups. TEM and SEM images showed non-uniform spherical and AgNPs of 10-80 nm. XRD data confirmed that the resultant particles are AgNPs. The AgNPs showed effective activity against multi-drug resistant (MDR) Pseudomonas aeruginosa, Salmonella sp., Shigella sp., E. coli, Enterobacter sp., Staphylococcus aureus, and Bacillus cereus. The AgNPs demonstrated effectiveness in lower concentrations compared to broad-spectrum antibiotics. Conclusion: These data reveal that AgNP generated by R. planticola was more efficient against MDR microorganisms than commercial antibiotics. However, the cytotoxicity of these nanoparticles must be further studied. © 2022 The Author(s); Published by National Institute of Genetic Engineering and Biotechnology.