Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Nanoparticles-Induced Inflammatory Cytokines in Human Plasma Concentration Manner: An Ignored Factor at the Nanobio-Interface Publisher



Tirtaatmadja N1 ; Mortimer G1 ; Ng EP2 ; Ahmad HA3 ; Mintova S3 ; Serpooshan V4 ; Minchin RF1 ; Mahmoudi M4, 5
Authors

Source: Journal of the Iranian Chemical Society Published:2015


Abstract

Properties of nanoparticles (NPs) are responsible for their interaction with various biomolecules such as proteins in biological environments. Amount and composition of the proteins associated with NPs, i.e. protein corona, are strongly dependent on physicochemical characteristics of the particles, as well as incubation parameters including temperature and protein concentration. More importantly, the protein corona can define the biological fate of the NPs. Here, we demonstrate that variations in the concentration of plasma protein led to significant changes in the composition of the hard corona adsorbed on the surface of different NPs including hydrophilic amorphous silica (SiO2), hydrophilic crystalline zeolite (EMT), and hydrophobic sulfonatedmodified polystyrene. Alteration in the corona composition of the NPs is a result of the plasma concentration, i.e. it affects the release of inflammatory cytokines in a plasma concentration-dependent manner. The amorphous silica nanoparticles with hydrophilic surfaces induced the release of the inflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNFα) in 10 % plasma concentration, but not at higher concentrations. A reverse trend was observed for the hydrophobic, sulfonated-modified polystyrene NPs. Remarkably the hydrophilic highly porous EMT NPs exhibited no cellular toxicity regardless to the plasma concentration. The results obtained in this study can be used to define optimal pathways for nanoparticles administration in vivo. These findings can assist researchers to better understand how NPs with different surface properties may interact with various proteins in vivo, and elucidate safety considerations for their biomedical applications. © Iranian Chemical Society 2014.
Other Related Docs
5. Protein Corona: Opportunities and Challenges, International Journal of Biochemistry and Cell Biology (2016)
8. Protein Corona: Challenges and Opportunities for Cancer Therapy, Functionalized Nanomaterials for Cancer Research: Applications in Treatments# Tools and Devices (2024)
9. Disease Specific Protein Corona, Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2015)