Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Deep Learning-Based Automated Delineation of Head and Neck Malignant Lesions From Pet Images Publisher



Arabi H1 ; Shiri I1 ; Jenabi E2 ; Becker M1 ; Zaidi H1, 3
Authors
Show Affiliations
Authors Affiliations
  1. 1. The Division of Nuclear Medicine & Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
  2. 2. Research Centre for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Geneva University Neurocenter, Geneva University, Geneva, Switzerland

Source: 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2020 Published:2020


Abstract

Accurate delineation of the gross tumor volume (GTV) is critical for treatment planning in radiation oncology. This task is very challenging owing to the irregular and diverse shapes of malignant lesions. Manual delineation of the GTVs on PET images is not only time-consuming but also suffers from inter- and intra-observer variability. In this work, we developed deep learning-based approaches for automated GTV delineation on PET images of head and neck cancer patients. To this end, V-Net, a fully convolutional neural network for volumetric medical image segmentation, and HighResNet, a 20-layer residual convolutional neural network, were adopted. 18F-FDG-PET/CT images of 510 patients presenting with head and neck cancer on which manually defined (reference) GTVs were utilized for training, evaluation and testing of these algorithms. The input of these networks (in both training or evaluation phases) were 12×12×12 cm sub-volumes of PET images containing the whole volume of the tumors and the neighboring background radiotracer uptake. These networks were trained to generate a binary mask representing the GTV on the input PET sub-volume. Standard segmentation metrics, including Dice similarity and precision were used for performance assessment of these algorithms. HighResNet achieved automated GTV delineation with a Dice index of 0.87±0.04 compared to 0.86±0.06 achieved by V-Net. Despite the close performance of these two approaches, HighResNet exhibited less variability among different subjects as reflected in the smaller standard deviation and significantly higher precision index (0.87±0.07 versus 0.80±0.10). Deep learning techniques, in particular HighResNet algorithm, exhibited promising performance for automated GTV delineation on head and neck PET images. Incorporation of anatomical/structural information, particularly MRI, may result in higher segmentation accuracy or less variability among the different subjects. © 2020 IEEE
3. Deep Active Learning Model for Adaptive Pet Attenuation and Scatter Correction in Multi-Centric Studies, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
6. A Novel Attention-Based Convolutional Neural Network for Joint Denoising and Partial Volume Correction of Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
7. Atb-Net: A Novel Attention-Based Convolutional Neural Network for Predicting Full-Dose From Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
Experts (# of related papers)
Other Related Docs
14. Investigation of Noise Reduction in Low-Dose Spect Myocardial Perfusion Images With a Generative Adversarial Network, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)