Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Leveraging Deep Neural Networks to Improve Numerical and Perceptual Image Quality in Low-Dose Preclinical Pet Imaging Publisher Pubmed



Amirrashedi M1, 2 ; Sarkar S1, 2 ; Mamizadeh H1, 2 ; Ghadiri H1, 2 ; Ghafarian P3, 4 ; Zaidi H5, 6, 7, 8 ; Ay MR1, 2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
  4. 4. PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical, Tehran, Iran
  5. 5. Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland
  6. 6. Geneva University Neurocenter, Geneva University, Geneva, Switzerland
  7. 7. Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
  8. 8. Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark

Source: Computerized Medical Imaging and Graphics Published:2021


Abstract

The amount of radiotracer injected into laboratory animals is still the most daunting challenge facing translational PET studies. Since low-dose imaging is characterized by a higher level of noise, the quality of the reconstructed images leaves much to be desired. Being the most ubiquitous techniques in denoising applications, edge-aware denoising filters, and reconstruction-based techniques have drawn significant attention in low-count applications. However, for the last few years, much of the credit has gone to deep-learning (DL) methods, which provide more robust solutions to handle various conditions. Albeit being extensively explored in clinical studies, to the best of our knowledge, there is a lack of studies exploring the feasibility of DL-based image denoising in low-count small animal PET imaging. Therefore, herein, we investigated different DL frameworks to map low-dose small animal PET images to their full-dose equivalent with quality and visual similarity on a par with those of standard acquisition. The performance of the DL model was also compared to other well-established filters, including Gaussian smoothing, nonlocal means, and anisotropic diffusion. Visual inspection and quantitative assessment based on quality metrics proved the superior performance of the DL methods in low-count small animal PET studies, paving the way for a more detailed exploration of DL-assisted algorithms in this domain. © 2021 The Authors
2. Standard-Dose Pet Reconstruction From Low-Dose Preclinical Images Using an Adopted All Convolutional U-Net, Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2021)
4. Atb-Net: A Novel Attention-Based Convolutional Neural Network for Predicting Full-Dose From Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
6. A Novel Attention-Based Convolutional Neural Network for Joint Denoising and Partial Volume Correction of Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
8. Investigation of Noise Reduction in Low-Dose Spect Myocardial Perfusion Images With a Generative Adversarial Network, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
Experts (# of related papers)
Other Related Docs
11. Deep Learning-Based Low-Dose Cardiac Gated Spect: Implementation in Projection Space Vs. Image Space, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
16. Deep Learning-Based Automated Delineation of Head and Neck Malignant Lesions From Pet Images, 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2020 (2020)
20. Automatic Archiving and Classification of Positron Emission Tomography Images Using Deep Learning Models at Different Scan Times, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
25. A Multi-Purpose Clinical Pet Scanner With Dynamic Gantry Design, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)