Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Deep Learning-Based Partial Volume Correction in Standard and Low-Dose Positron Emission Tomography-Computed Tomography Imaging Publisher



Mohammadsaber A1, 2 ; Kamaliasl A1 ; Mohammadreza A2, 3 ; Zeraatkar N4 ; Mahboubehsadat H1 ; Sanaat A5 ; Dadgar H6 ; Arabi H5
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
  2. 2. Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
  3. 3. Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
  4. 4. Siemens Medical Solutions USA, Inc., Knoxville, TN, United States
  5. 5. Division of Nuclear Medicine & Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
  6. 6. Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran

Source: Quantitative Imaging in Medicine and Surgery Published:2024


Abstract

Background: Positron emission tomography (PET) imaging encounters the obstacle of partial volume effects, arising from its limited intrinsic resolution, giving rise to (I) considerable bias, particularly for structures comparable in size to the point spread function (PSF) of the system; and (II) blurred image edges and blending of textures along the borders. We set out to build a deep learning-based framework for predicting partial volume corrected full-dose (FD + PVC) images from either standard or low-dose (LD) PET images without requiring any anatomical data in order to provide a joint solution for partial volume correction and de-noise LD PET images. Methods: We trained a modified encoder-decoder U-Net network with standard of care or LD PET images as the input and FD + PVC images by six different PVC methods as the target. These six PVC approaches include geometric transfer matrix (GTM), multi-target correction (MTC), region-based voxel-wise correction (RBV), iterative Yang (IY), reblurred Van-Cittert (RVC), and Richardson-Lucy (RL). The proposed models were evaluated using standard criteria, such as peak signal-to-noise ratio (PSNR), root mean squared error (RMSE), structural similarity index (SSIM), relative bias, and absolute relative bias. Results: Different levels of error were observed for these partial volume correction methods, which were relatively smaller for GTM with a SSIM of 0.63 for LD and 0.29 for FD, IY with an SSIM of 0.63 for LD and 0.67 for FD, RBV with an SSIM of 0.57 for LD and 0.65 for FD, and RVC with an SSIM of 0.89 for LD and 0.94 for FD PVC approaches. However, large quantitative errors were observed for multi-target MTC with an RMSE of 2.71 for LD and 2.45 for FD and RL with an RMSE of 5 for LD and 3.27 for FD PVC approaches. Conclusions: We found that the proposed framework could effectively perform joint de-noising and partial volume correction for PET images with LD and FD input PET data (LD vs. FD). When no magnetic resonance imaging (MRI) images are available, the developed deep learning models could be used for partial volume correction on LD or standard PET-computed tomography (PET-CT) scans as an image quality enhancement technique. © Quantitative Imaging in Medicine and Surgery. All rights reserved.
2. A Novel Attention-Based Convolutional Neural Network for Joint Denoising and Partial Volume Correction of Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
3. Atb-Net: A Novel Attention-Based Convolutional Neural Network for Predicting Full-Dose From Low-Dose Pet Images, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
4. Investigation of Noise Reduction in Low-Dose Spect Myocardial Perfusion Images With a Generative Adversarial Network, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
5. Deep Learning-Based Low-Dose Cardiac Gated Spect: Implementation in Projection Space Vs. Image Space, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
Experts (# of related papers)
Other Related Docs
9. Deep Learning-Based Automated Delineation of Head and Neck Malignant Lesions From Pet Images, 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference# NSS/MIC 2020 (2020)
24. A Multi-Purpose Clinical Pet Scanner With Dynamic Gantry Design, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)
30. Deep Active Learning Model for Adaptive Pet Attenuation and Scatter Correction in Multi-Centric Studies, 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record# NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors# RTSD 2022 (2021)