Style | Citing Format |
---|---|
MLA | Khodajouchokami H, Hosseini SA, Ay MR. "Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction." Journal of Instrumentation, vol. 17, no. 2, 2022, pp. -. |
APA | Khodajouchokami H, Hosseini SA, Ay MR (2022). Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction. Journal of Instrumentation, 17(2), -. |
Chicago | Khodajouchokami H, Hosseini SA, Ay MR. "Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction." Journal of Instrumentation 17, no. 2 (2022): -. |
Harvard | Khodajouchokami H, Hosseini SA, Ay MR (2022) 'Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction', Journal of Instrumentation, 17(2), pp. -. |
Vancouver | Khodajouchokami H, Hosseini SA, Ay MR. Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction. Journal of Instrumentation. 2022;17(2):-. |
BibTex | @article{ author = {Khodajouchokami H and Hosseini SA and Ay MR}, title = {Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction}, journal = {Journal of Instrumentation}, volume = {17}, number = {2}, pages = {-}, year = {2022} } |
RIS | TY - JOUR AU - Khodajouchokami H AU - Hosseini SA AU - Ay MR TI - Pars-Net: A Novel Deep Learning Framework Using Parallel Residual Conventional Neural Networks for Sparse-View Ct Reconstruction JO - Journal of Instrumentation VL - 17 IS - 2 SP - EP - PY - 2022 ER - |