Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Synthesis and Evaluation of a Glutamic Acid-Modified Hpamam Complex As a Promising Versatile Gene Carrier Publisher Pubmed



Hemmati M1 ; Kazemi B2 ; Najafi F3 ; Zarebkohan A1 ; Shirkoohi R4
Authors

Source: Journal of Drug Targeting Published:2016


Abstract

Hyperbranched poly(amidoamine) (HPAMAM), structurally analogous to polyamidoamine dendrimer (PAMAM) dendrimers, has been suggested to be an effective carrier for gene delivery. In the present study, glutamic acid-modified hPAMAM was developed as a novel non-viral gene carrier for the first time. The hPAMAM was synthesized by using a modified one-pot method. DNA was found to be bound to hPAMAM at different weight ratios (WhPAMAM/WDNA). The resulting HPAMAM-Glu20 was able to efficiently protect the encapsulated-DNA against degradation for over 2 h. In addition to low cytotoxicity, the transfection efficiency of hPAMAM-Glu20 represented much higher (p < 0.05) than that of Lipofectamine 2000 in both MCF7 and MDA-MB231 cells. Cellular uptake of the hPAMAM-Glu20 in MDA-MB231 cells, 173.56 ± 1.37%, was significantly higher than that of MCF7 cells, 65.00 ± 1.73% (p < 0.05). The results indicated that hPAMAM-Glu20-mediated gene delivery to breast cancer cells is a feasible and effective strategy that may provide a new therapeutic avenue as a non-viral gene delivery carrier. In addition, it was found that hPAMAM-glutamic amino acid (Glu)-based gene delivery is an economical, effective and biocompatible method. © 2015 Taylor & Francis.
Other Related Docs
16. Carbosilane Dendrimers: Drug and Gene Delivery Applications, Journal of Drug Delivery Science and Technology (2020)