Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! By
Analyzing Retinal Vessel Morphology in Ms Using Interpretable Ai on Deep Learning-Segmented Ir-Slo Images Publisher



A Soltanipour ASIEH ; R Arian ROYA ; A Aghababaei ALI ; F Ashtari FERESHTEH ; Y Zhou YUKUN ; Pa Keane Pearse A ; R Kafieh RAHELEH
Authors

Source: Bioengineering Published:2025


Abstract

Multiple sclerosis (MS), a chronic disease of the central nervous system, is known to cause structural and vascular changes in the retina. Although optical coherence tomography (OCT) and fundus photography can detect retinal thinning and circulatory abnormalities, these findings are not specific to MS. This study explores the potential of Infrared Scanning-Laser-Ophthalmoscopy (IR-SLO) imaging to uncover vascular morphological features that may serve as MS-specific biomarkers. Using an age-matched, subject-wise stratified k-fold cross-validation approach, a deep learning model originally designed for color fundus images was adapted to segment optic disc, optic cup, and retinal vessels in IR-SLO images, achieving Dice coefficients of 91%, 94.5%, and 97%, respectively. This process included tailored pre- and post-processing steps to optimize segmentation accuracy. Subsequently, clinically relevant features were extracted. Statistical analyses followed by SHapley Additive exPlanations (SHAP) identified vessel fractal dimension, vessel density in zones B and C (circular regions extending 0.5–1 and 0.5–2 optic disc diameters from the optic disc margin, respectively), along with vessel intensity and width, as key differentiators between MS patients and healthy controls. These findings suggest that IR-SLO can non-invasively detect retinal vascular biomarkers that may serve as additional or alternative diagnostic markers for MS diagnosis, complementing current invasive procedures. © 2025 Elsevier B.V., All rights reserved.
Other Related Docs
13. Vessel Segmentation in Images of Optical Coherence Tomography Using Shadow Information and Thickening of Retinal Nerve Fiber Layer, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (2013)