Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Natural Compounds for Skin Tissue Engineering by Electrospinning of Nylon-Beta Vulgaris Publisher Pubmed



Ranjbarvan P1, 2 ; Mahmoudifard M1, 3 ; Kehtari M1, 4 ; Babaie A1, 5 ; Hamedi S6 ; Mirzaei S1 ; Soleimani M7 ; Hosseinzadeh S4, 5, 8
Authors
Show Affiliations
Authors Affiliations
  1. 1. Stem Cell Technology Research Center, Tehran, Iran
  2. 2. Department of tissue engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
  3. 3. Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
  4. 4. School of Biology, College of Science, University of Tehran, Tehran, Iran
  5. 5. School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  6. 6. Department of Persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
  7. 7. Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
  8. 8. Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Source: ASAIO Journal Published:2018


Abstract

Natural compounds containing polysaccharide ingredients have been employed as candidates for treatment of skin tissue. Herein, for the first time, electrospinning setup was proposed to fabricate an efficient composite nanofibrous structure of Beta vulgaris (obtained from Beet [Chenopodiaceae or Amaranthaceae]) belonged to polysaccharides and an elastic polymer named nylon 66 for skin tissue engineering. Both prepared scaffolds including noncomposite and composite types were studied by Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical assay, and contact angle. Scanning electron microscope examinations have approved the uniform and homogeneous structure of composite nanofibers containing nylon polymer and B. vulgaris extract. FTIR spectroscopy was endorsed the presence of B. vulgaris extract within the interwoven mat of nanofibers. Also, measurement of mechanical property with cellladen composite scaffolds approved the desirable similarity between corresponding scaffold and native skin tissue. To our surprise, it was found that compared with nylon nanofibrous scaffold, composite sample containing B. vulgaris extract has lower contact angle indicating a higher hydrophilic surface. After cell seeding process of keratinocyte cells on composite and noncomposite scaffolds, SEM and 3[4,5-dimethylthiazoyl- 2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays approved higher number of attached cells onto the corresponding composite electrospun membrane. Epidermal gene expression such as involucrin, cytokeratin 10, and cytokeratin 14 was observed through real-time polymerase chain reaction (PCR) technique. Furthermore, immunocytochemistry results (cytokeratin 10 and loricrin) approved that the original property of keratinocytes was strongly preserved using composite scaffold. The corresponding study tries to introduce a new type of natural-based scaffolds for dermal tissue engineering that exhibits an elastic behavior similar to native skin tissue. Copyright © 2017 by the ASAIO.