Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Assessment of the Impact of Different Fecal Storage Protocols on the Microbiota Diversity and Composition: A Pilot Study Publisher Pubmed



Moossavi S1, 2 ; Engen PA3 ; Ghanbari R1, 4 ; Green SJ5, 6 ; Naqib A5 ; Bishehsari F3 ; Merat S1, 7 ; Poustchi H7 ; Keshavarzian A3, 8, 9, 10 ; Malekzadeh R1, 7
Authors
Show Affiliations
Authors Affiliations
  1. 1. Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
  2. 2. Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
  3. 3. Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, United States
  4. 4. Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
  5. 5. Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
  6. 6. Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
  7. 7. Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali Avenue, Tehran, Iran
  8. 8. Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States
  9. 9. Department of Physiology, Rush University Medical Center, Chicago, IL, United States
  10. 10. Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands

Source: BMC Microbiology Published:2019


Abstract

Background: Fecal samples are currently the most commonly studied proxy for gut microbiota. The gold standard of sample handling and storage for microbiota analysis is maintaining the cold chain during sample transfer and immediate storage at - 80 °C. Gut microbiota studies in large-scale, population-based cohorts require a feasible sample collection protocol. We compared the effect of three different storage methods and mock shipment: immediate freezing at - 80 °C, in 95% ethanol stored at room temperature (RT) for 48 h, and on blood collection card stored at RT for 48 h, on the measured composition of fecal microbiota of eight healthy, female volunteers by sequencing the V4 region of the 16S rRNA gene on an Illumina MiSeq. Results: Shared operational taxonomic units (OTUs) between different methods were 68 and 3% for OTUs > 0.01 and < 0.01% mean relative abundance within each group, respectively. α and β-diversity measures were not significantly impacted by different storage methods. With the exception of Actinobacteria, fecal microbiota profiles at the phylum level were not significantly affected by the storage method. Actinobacteria was significantly higher in samples collected on card compared to immediate freezing (1.6 ± 1.1% vs. 0.4 ± 0.2%, p = 0.005) mainly driven by expansion of Actinobacteria relative abundance in fecal samples stored on card in two individuals. There was no statistically significant difference at lower taxonomic levels tested. Conclusion: Consistent results of the microbiota composition and structure for different storage methods were observed. Fecal collection on card could be a suitable alternative to immediate freezing for fecal microbiota analysis using 16S rRNA gene amplicon sequencing. © 2019 The Author(s).